Fast and robust deconvolution of tumor infiltrating lymphocyte from expression profiles using least trimmed squares

Gene-expression deconvolution is used to quantify different types of cells in a mixed population. It provides a highly promising solution to rapidly characterize the tumor-infiltrating immune landscape and identify cold cancers. However, a major challenge is that gene-expression data are frequently...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2019-05, Vol.15 (5), p.e1006976-e1006976
Hauptverfasser: Hao, Yuning, Yan, Ming, Heath, Blake R, Lei, Yu L, Xie, Yuying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gene-expression deconvolution is used to quantify different types of cells in a mixed population. It provides a highly promising solution to rapidly characterize the tumor-infiltrating immune landscape and identify cold cancers. However, a major challenge is that gene-expression data are frequently contaminated by many outliers that decrease the estimation accuracy. Thus, it is imperative to develop a robust deconvolution method that automatically decontaminates data by reliably detecting and removing outliers. We developed a new machine learning tool, Fast And Robust DEconvolution of Expression Profiles (FARDEEP), to enumerate immune cell subsets from whole tumor tissue samples. To reduce noise in the tumor gene expression datasets, FARDEEP utilizes an adaptive least trimmed square to automatically detect and remove outliers before estimating the cell compositions. We show that FARDEEP is less susceptible to outliers and returns a better estimation of coefficients than the existing methods with both numerical simulations and real datasets. FARDEEP provides an estimate related to the absolute quantity of each immune cell subset in addition to relative percentages. Hence, FARDEEP represents a novel robust algorithm to complement the existing toolkit for the characterization of tissue-infiltrating immune cell landscape. The source code for FARDEEP is implemented in R and available for download at https://github.com/YuningHao/FARDEEP.git.
ISSN:1553-7358
1553-734X
1553-7358
DOI:10.1371/journal.pcbi.1006976