Fast and robust deconvolution of tumor infiltrating lymphocyte from expression profiles using least trimmed squares
Gene-expression deconvolution is used to quantify different types of cells in a mixed population. It provides a highly promising solution to rapidly characterize the tumor-infiltrating immune landscape and identify cold cancers. However, a major challenge is that gene-expression data are frequently...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2019-05, Vol.15 (5), p.e1006976-e1006976 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1006976 |
---|---|
container_issue | 5 |
container_start_page | e1006976 |
container_title | PLoS computational biology |
container_volume | 15 |
creator | Hao, Yuning Yan, Ming Heath, Blake R Lei, Yu L Xie, Yuying |
description | Gene-expression deconvolution is used to quantify different types of cells in a mixed population. It provides a highly promising solution to rapidly characterize the tumor-infiltrating immune landscape and identify cold cancers. However, a major challenge is that gene-expression data are frequently contaminated by many outliers that decrease the estimation accuracy. Thus, it is imperative to develop a robust deconvolution method that automatically decontaminates data by reliably detecting and removing outliers. We developed a new machine learning tool, Fast And Robust DEconvolution of Expression Profiles (FARDEEP), to enumerate immune cell subsets from whole tumor tissue samples. To reduce noise in the tumor gene expression datasets, FARDEEP utilizes an adaptive least trimmed square to automatically detect and remove outliers before estimating the cell compositions. We show that FARDEEP is less susceptible to outliers and returns a better estimation of coefficients than the existing methods with both numerical simulations and real datasets. FARDEEP provides an estimate related to the absolute quantity of each immune cell subset in addition to relative percentages. Hence, FARDEEP represents a novel robust algorithm to complement the existing toolkit for the characterization of tissue-infiltrating immune cell landscape. The source code for FARDEEP is implemented in R and available for download at https://github.com/YuningHao/FARDEEP.git. |
doi_str_mv | 10.1371/journal.pcbi.1006976 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2250647376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e1a1448a77af46a9b55fa275f695a5c2</doaj_id><sourcerecordid>2232047137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592t-5ed42a93a265d086cf8bea4a989c13af86f587423daed4a03576bc0d5ac5303f3</originalsourceid><addsrcrecordid>eNptkk9v1DAQxSMEoqXwDRBY4sJlF_-J7fiChCoKlSpxgbM1cextVk6c2k7V_fY43bRqESeP7N97njeaqnpP8JYwSb7swxxH8NvJtP2WYCyUFC-qU8I520jGm5dP6pPqTUp7jEupxOvqhBHMFefqtEoXkDKCsUMxtHMpO2vCeBv8nPswouBQnocQUT-63ucIuR93yB-G6TqYQ7bIxTAgezdFm9IimGIooE1oTvekXexz7IfBdijdzFDAt9UrBz7Zd-t5Vv25-P77_Ofm6tePy_NvVxvDFc0bbruagmJABe9wI4xrWgs1qEYZwsA1wvFG1pR1UEgo4aRoDe44GM4wc-ys-nj0nXxIep1X0pRyLGrJpCjE5ZHoAuz1VNqEeNABen1_EeJOQ8y98VZbAqSuG5ASXC1AtZw7oJI7oThwQ4vX1_W3uS1hjR3LuPwz0-cvY3-td-FWC04plqQYfF4NYriZbcp66JOx3sNow7z0zSiuCygL-ukf9P_p6iNlYkgpWvfYDMF62aEHlV52SK87VGQfngZ5FD0sDfsLuGDIkg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250647376</pqid></control><display><type>article</type><title>Fast and robust deconvolution of tumor infiltrating lymphocyte from expression profiles using least trimmed squares</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Hao, Yuning ; Yan, Ming ; Heath, Blake R ; Lei, Yu L ; Xie, Yuying</creator><creatorcontrib>Hao, Yuning ; Yan, Ming ; Heath, Blake R ; Lei, Yu L ; Xie, Yuying</creatorcontrib><description>Gene-expression deconvolution is used to quantify different types of cells in a mixed population. It provides a highly promising solution to rapidly characterize the tumor-infiltrating immune landscape and identify cold cancers. However, a major challenge is that gene-expression data are frequently contaminated by many outliers that decrease the estimation accuracy. Thus, it is imperative to develop a robust deconvolution method that automatically decontaminates data by reliably detecting and removing outliers. We developed a new machine learning tool, Fast And Robust DEconvolution of Expression Profiles (FARDEEP), to enumerate immune cell subsets from whole tumor tissue samples. To reduce noise in the tumor gene expression datasets, FARDEEP utilizes an adaptive least trimmed square to automatically detect and remove outliers before estimating the cell compositions. We show that FARDEEP is less susceptible to outliers and returns a better estimation of coefficients than the existing methods with both numerical simulations and real datasets. FARDEEP provides an estimate related to the absolute quantity of each immune cell subset in addition to relative percentages. Hence, FARDEEP represents a novel robust algorithm to complement the existing toolkit for the characterization of tissue-infiltrating immune cell landscape. The source code for FARDEEP is implemented in R and available for download at https://github.com/YuningHao/FARDEEP.git.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1006976</identifier><identifier>PMID: 31059559</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Bias ; Biology and Life Sciences ; Cancer ; Computational mathematics ; Computer simulation ; Data analysis ; Datasets ; Decontamination ; Deconvolution ; Dentistry ; Downloading ; Engineering ; Engineering and Technology ; Gene expression ; Gene Expression Profiling - methods ; Gene Expression Regulation - genetics ; Genomics ; Humans ; Immune system ; Immunology ; Learning algorithms ; Least-Squares Analysis ; Lymphocytes ; Lymphocytes, Tumor-Infiltrating - metabolism ; Machine learning ; Medicine and Health Sciences ; Methods ; Neoplasms - genetics ; Noise reduction ; Normal distribution ; Numerical methods ; Outliers (statistics) ; Physical Sciences ; Research and Analysis Methods ; Robustness (mathematics) ; Sequence Analysis, DNA - methods ; Software ; Source code ; Transcriptome - genetics ; Tumors</subject><ispartof>PLoS computational biology, 2019-05, Vol.15 (5), p.e1006976-e1006976</ispartof><rights>2019 Hao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Hao et al 2019 Hao et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c592t-5ed42a93a265d086cf8bea4a989c13af86f587423daed4a03576bc0d5ac5303f3</citedby><cites>FETCH-LOGICAL-c592t-5ed42a93a265d086cf8bea4a989c13af86f587423daed4a03576bc0d5ac5303f3</cites><orcidid>0000-0001-8509-3696 ; 0000-0002-8686-3530 ; 0000-0002-1049-2219 ; 0000-0001-8656-0532 ; 0000-0002-9868-9824</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6522071/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6522071/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31059559$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hao, Yuning</creatorcontrib><creatorcontrib>Yan, Ming</creatorcontrib><creatorcontrib>Heath, Blake R</creatorcontrib><creatorcontrib>Lei, Yu L</creatorcontrib><creatorcontrib>Xie, Yuying</creatorcontrib><title>Fast and robust deconvolution of tumor infiltrating lymphocyte from expression profiles using least trimmed squares</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Gene-expression deconvolution is used to quantify different types of cells in a mixed population. It provides a highly promising solution to rapidly characterize the tumor-infiltrating immune landscape and identify cold cancers. However, a major challenge is that gene-expression data are frequently contaminated by many outliers that decrease the estimation accuracy. Thus, it is imperative to develop a robust deconvolution method that automatically decontaminates data by reliably detecting and removing outliers. We developed a new machine learning tool, Fast And Robust DEconvolution of Expression Profiles (FARDEEP), to enumerate immune cell subsets from whole tumor tissue samples. To reduce noise in the tumor gene expression datasets, FARDEEP utilizes an adaptive least trimmed square to automatically detect and remove outliers before estimating the cell compositions. We show that FARDEEP is less susceptible to outliers and returns a better estimation of coefficients than the existing methods with both numerical simulations and real datasets. FARDEEP provides an estimate related to the absolute quantity of each immune cell subset in addition to relative percentages. Hence, FARDEEP represents a novel robust algorithm to complement the existing toolkit for the characterization of tissue-infiltrating immune cell landscape. The source code for FARDEEP is implemented in R and available for download at https://github.com/YuningHao/FARDEEP.git.</description><subject>Algorithms</subject><subject>Bias</subject><subject>Biology and Life Sciences</subject><subject>Cancer</subject><subject>Computational mathematics</subject><subject>Computer simulation</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Decontamination</subject><subject>Deconvolution</subject><subject>Dentistry</subject><subject>Downloading</subject><subject>Engineering</subject><subject>Engineering and Technology</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation - genetics</subject><subject>Genomics</subject><subject>Humans</subject><subject>Immune system</subject><subject>Immunology</subject><subject>Learning algorithms</subject><subject>Least-Squares Analysis</subject><subject>Lymphocytes</subject><subject>Lymphocytes, Tumor-Infiltrating - metabolism</subject><subject>Machine learning</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Neoplasms - genetics</subject><subject>Noise reduction</subject><subject>Normal distribution</subject><subject>Numerical methods</subject><subject>Outliers (statistics)</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><subject>Robustness (mathematics)</subject><subject>Sequence Analysis, DNA - methods</subject><subject>Software</subject><subject>Source code</subject><subject>Transcriptome - genetics</subject><subject>Tumors</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptkk9v1DAQxSMEoqXwDRBY4sJlF_-J7fiChCoKlSpxgbM1cextVk6c2k7V_fY43bRqESeP7N97njeaqnpP8JYwSb7swxxH8NvJtP2WYCyUFC-qU8I520jGm5dP6pPqTUp7jEupxOvqhBHMFefqtEoXkDKCsUMxtHMpO2vCeBv8nPswouBQnocQUT-63ucIuR93yB-G6TqYQ7bIxTAgezdFm9IimGIooE1oTvekXexz7IfBdijdzFDAt9UrBz7Zd-t5Vv25-P77_Ofm6tePy_NvVxvDFc0bbruagmJABe9wI4xrWgs1qEYZwsA1wvFG1pR1UEgo4aRoDe44GM4wc-ys-nj0nXxIep1X0pRyLGrJpCjE5ZHoAuz1VNqEeNABen1_EeJOQ8y98VZbAqSuG5ASXC1AtZw7oJI7oThwQ4vX1_W3uS1hjR3LuPwz0-cvY3-td-FWC04plqQYfF4NYriZbcp66JOx3sNow7z0zSiuCygL-ukf9P_p6iNlYkgpWvfYDMF62aEHlV52SK87VGQfngZ5FD0sDfsLuGDIkg</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Hao, Yuning</creator><creator>Yan, Ming</creator><creator>Heath, Blake R</creator><creator>Lei, Yu L</creator><creator>Xie, Yuying</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8509-3696</orcidid><orcidid>https://orcid.org/0000-0002-8686-3530</orcidid><orcidid>https://orcid.org/0000-0002-1049-2219</orcidid><orcidid>https://orcid.org/0000-0001-8656-0532</orcidid><orcidid>https://orcid.org/0000-0002-9868-9824</orcidid></search><sort><creationdate>20190501</creationdate><title>Fast and robust deconvolution of tumor infiltrating lymphocyte from expression profiles using least trimmed squares</title><author>Hao, Yuning ; Yan, Ming ; Heath, Blake R ; Lei, Yu L ; Xie, Yuying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592t-5ed42a93a265d086cf8bea4a989c13af86f587423daed4a03576bc0d5ac5303f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Bias</topic><topic>Biology and Life Sciences</topic><topic>Cancer</topic><topic>Computational mathematics</topic><topic>Computer simulation</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Decontamination</topic><topic>Deconvolution</topic><topic>Dentistry</topic><topic>Downloading</topic><topic>Engineering</topic><topic>Engineering and Technology</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation - genetics</topic><topic>Genomics</topic><topic>Humans</topic><topic>Immune system</topic><topic>Immunology</topic><topic>Learning algorithms</topic><topic>Least-Squares Analysis</topic><topic>Lymphocytes</topic><topic>Lymphocytes, Tumor-Infiltrating - metabolism</topic><topic>Machine learning</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Neoplasms - genetics</topic><topic>Noise reduction</topic><topic>Normal distribution</topic><topic>Numerical methods</topic><topic>Outliers (statistics)</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><topic>Robustness (mathematics)</topic><topic>Sequence Analysis, DNA - methods</topic><topic>Software</topic><topic>Source code</topic><topic>Transcriptome - genetics</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Yuning</creatorcontrib><creatorcontrib>Yan, Ming</creatorcontrib><creatorcontrib>Heath, Blake R</creatorcontrib><creatorcontrib>Lei, Yu L</creatorcontrib><creatorcontrib>Xie, Yuying</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Yuning</au><au>Yan, Ming</au><au>Heath, Blake R</au><au>Lei, Yu L</au><au>Xie, Yuying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast and robust deconvolution of tumor infiltrating lymphocyte from expression profiles using least trimmed squares</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>15</volume><issue>5</issue><spage>e1006976</spage><epage>e1006976</epage><pages>e1006976-e1006976</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Gene-expression deconvolution is used to quantify different types of cells in a mixed population. It provides a highly promising solution to rapidly characterize the tumor-infiltrating immune landscape and identify cold cancers. However, a major challenge is that gene-expression data are frequently contaminated by many outliers that decrease the estimation accuracy. Thus, it is imperative to develop a robust deconvolution method that automatically decontaminates data by reliably detecting and removing outliers. We developed a new machine learning tool, Fast And Robust DEconvolution of Expression Profiles (FARDEEP), to enumerate immune cell subsets from whole tumor tissue samples. To reduce noise in the tumor gene expression datasets, FARDEEP utilizes an adaptive least trimmed square to automatically detect and remove outliers before estimating the cell compositions. We show that FARDEEP is less susceptible to outliers and returns a better estimation of coefficients than the existing methods with both numerical simulations and real datasets. FARDEEP provides an estimate related to the absolute quantity of each immune cell subset in addition to relative percentages. Hence, FARDEEP represents a novel robust algorithm to complement the existing toolkit for the characterization of tissue-infiltrating immune cell landscape. The source code for FARDEEP is implemented in R and available for download at https://github.com/YuningHao/FARDEEP.git.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>31059559</pmid><doi>10.1371/journal.pcbi.1006976</doi><orcidid>https://orcid.org/0000-0001-8509-3696</orcidid><orcidid>https://orcid.org/0000-0002-8686-3530</orcidid><orcidid>https://orcid.org/0000-0002-1049-2219</orcidid><orcidid>https://orcid.org/0000-0001-8656-0532</orcidid><orcidid>https://orcid.org/0000-0002-9868-9824</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2019-05, Vol.15 (5), p.e1006976-e1006976 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2250647376 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS) |
subjects | Algorithms Bias Biology and Life Sciences Cancer Computational mathematics Computer simulation Data analysis Datasets Decontamination Deconvolution Dentistry Downloading Engineering Engineering and Technology Gene expression Gene Expression Profiling - methods Gene Expression Regulation - genetics Genomics Humans Immune system Immunology Learning algorithms Least-Squares Analysis Lymphocytes Lymphocytes, Tumor-Infiltrating - metabolism Machine learning Medicine and Health Sciences Methods Neoplasms - genetics Noise reduction Normal distribution Numerical methods Outliers (statistics) Physical Sciences Research and Analysis Methods Robustness (mathematics) Sequence Analysis, DNA - methods Software Source code Transcriptome - genetics Tumors |
title | Fast and robust deconvolution of tumor infiltrating lymphocyte from expression profiles using least trimmed squares |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T23%3A32%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20and%20robust%20deconvolution%20of%20tumor%20infiltrating%20lymphocyte%20from%20expression%20profiles%20using%20least%20trimmed%20squares&rft.jtitle=PLoS%20computational%20biology&rft.au=Hao,%20Yuning&rft.date=2019-05-01&rft.volume=15&rft.issue=5&rft.spage=e1006976&rft.epage=e1006976&rft.pages=e1006976-e1006976&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1006976&rft_dat=%3Cproquest_plos_%3E2232047137%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250647376&rft_id=info:pmid/31059559&rft_doaj_id=oai_doaj_org_article_e1a1448a77af46a9b55fa275f695a5c2&rfr_iscdi=true |