Enhanced oral bioavailability and anti-diabetic activity of canagliflozin through a spray dried lipid based oral delivery: a novel paradigm

Aim Canagliflozin (CFZ), a novel SGLT II antagonist, exhibits erratic absorption after oral administration. The current study entails development and evaluation of spray dried lipid based formulation (solid SMEDDS) for enhancing oral bioavailability and anti-diabetic activity of CFZ. Methods Solid S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Daru 2020-06, Vol.28 (1), p.191-208
Hauptverfasser: Singh, Dilpreet, Singh, Amrit Pal, Singh, Drishtant, Kesavan, Anup Kumar, Arora, Saroj, Tiwary, Ashok K., Bedi, Neena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aim Canagliflozin (CFZ), a novel SGLT II antagonist, exhibits erratic absorption after oral administration. The current study entails development and evaluation of spray dried lipid based formulation (solid SMEDDS) for enhancing oral bioavailability and anti-diabetic activity of CFZ. Methods Solid SMEDDS developed through spray drying containing Neusilin US2 as an adsorbent. The formed solid SMEDDS were characterized for physicochemical and solid state attributes. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) were used to confirm the spherical morphology. In vitro dissolution, ex vivo permeability and in vivo pharmacokinetic studies were conducted to determine the release rate, permeation rate and absorption profile of CFZ, respectively. Pharmacodynamic studies were done as per standard protocols. Results The optimized solid SMEDDS exhibited acceptable practical yield and flow properties and is vouched with enhanced amorphization, nanoparticulate distribution and acceptable drug content. The spherical morphology of solid SMEDDS and reconstituted SMEDDS were confirmed in SEM and TEM, respectively. In vitro dissolution studies revealed multi-fold release behavior in CFZ in various dissolution media, whereas, remarkable permeability was observed in jejunum segment of rat intestine. Pharmacokinetic studies of CFZ in solid SMEDDS demonstrated 2.53 and 1.43 fold enhancement in C max and 2.73 and 1.98 fold in AUC 0-24h , as compared to pure API and marketed formulation, respectively. Pharmacological evaluation of solid SMEDDS revealed enhanced anti-diabetic activity of CFZ through predominant SGLT II inhibition in rats, as evident from evaluation of biochemical levels, urinary glucose excretion studies and SGLT II expression analysis. Conclusion The current work describes significant improvement biopharmaceutical properties of CFZ in solid SMEDD formulation. Graphical abstract Graphical Abstract: Enhanced oral bioavailability and anti-diabetic activity of canagliflozin through a spray dried lipid based oral delivery: a novel paradigm
ISSN:2008-2231
1560-8115
2008-2231
DOI:10.1007/s40199-020-00330-3