The evolution of Class II Aminoacyl-tRNA synthetases and the first code
•A new evolutionary sequence for the catalytic domain of the Class II synthetases.•Two alternate catalytic domain extensions leads to a split of the Class II synthetases associated with the operational code.•The earliest Class II synthetase may form the link between a Thioester world and a Phosphoes...
Gespeichert in:
Veröffentlicht in: | FEBS letters 2015-11, Vol.589 (23), p.3499-3507 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •A new evolutionary sequence for the catalytic domain of the Class II synthetases.•Two alternate catalytic domain extensions leads to a split of the Class II synthetases associated with the operational code.•The earliest Class II synthetase may form the link between a Thioester world and a Phosphoester world.
Class II Aminoacyl-tRNA synthetases are a set of very ancient multi domain proteins. The evolution of the catalytic domain of Class II synthetases can be reconstructed from three peptidyl-hairpins. Further evolution from this primordial catalytic core leads to a split of the Class II synthetases into two divisions potentially associated with the operational code. The earliest form of this code likely coded predominantly Glycine (Gly), Proline (Pro), Alanine (Ala) and “Lysine”/Aspartic acid (Lys/Asp). There is a paradox in these synthetases beginning with a hairpin structure before the Genetic Code existed. A resolution is found in the suggestion that the primordial Aminoacyl synthetases formed in a transition from a Thioester world to a Phosphate ester world. |
---|---|
ISSN: | 0014-5793 1873-3468 |
DOI: | 10.1016/j.febslet.2015.10.006 |