Divergence-measure fields and hyperbolic conservation laws
. We analyze a class of (ProQuest: Formulae and/or non-USASCII text omitted; see image) vector fields, called divergence-measure fields. We establish the Gauss-Green formula, the normal traces over subsets of Lipschitz boundaries, and the product rule for this class of (ProQuest: Formulae and/or non...
Gespeichert in:
Veröffentlicht in: | Archive for rational mechanics and analysis 1999-06, Vol.147 (2), p.89-118 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | . We analyze a class of (ProQuest: Formulae and/or non-USASCII text omitted; see image) vector fields, called divergence-measure fields. We establish the Gauss-Green formula, the normal traces over subsets of Lipschitz boundaries, and the product rule for this class of (ProQuest: Formulae and/or non-USASCII text omitted; see image) fields. Then we apply this theory to analyze (ProQuest: Formulae and/or non-USASCII text omitted; see image) entropy solutions of initial-boundary-value problems for hyperbolic conservation laws and to study the ways in which the solutions assume their initial and boundary data. The examples of conservation laws include multidimensional scalar equations, the system of nonlinear elasticity, and a class of (ProQuest: Formulae and/or non-USASCII text omitted; see image) systems with affine characteristic hypersurfaces. The analysis in (ProQuest: Formulae and/or non-USASCII text omitted; see image) also extends to (ProQuest: Formulae and/or non-USASCII text omitted; see image) .[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0003-9527 1432-0673 |
DOI: | 10.1007/s002050050146 |