Divergence-measure fields and hyperbolic conservation laws
. We analyze a class of (ProQuest: Formulae and/or non-USASCII text omitted; see image) vector fields, called divergence-measure fields. We establish the Gauss-Green formula, the normal traces over subsets of Lipschitz boundaries, and the product rule for this class of (ProQuest: Formulae and/or non...
Gespeichert in:
Veröffentlicht in: | Archive for rational mechanics and analysis 1999-06, Vol.147 (2), p.89-118 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 118 |
---|---|
container_issue | 2 |
container_start_page | 89 |
container_title | Archive for rational mechanics and analysis |
container_volume | 147 |
creator | CHEN, G.-Q FRID, H |
description | . We analyze a class of (ProQuest: Formulae and/or non-USASCII text omitted; see image) vector fields, called divergence-measure fields. We establish the Gauss-Green formula, the normal traces over subsets of Lipschitz boundaries, and the product rule for this class of (ProQuest: Formulae and/or non-USASCII text omitted; see image) fields. Then we apply this theory to analyze (ProQuest: Formulae and/or non-USASCII text omitted; see image) entropy solutions of initial-boundary-value problems for hyperbolic conservation laws and to study the ways in which the solutions assume their initial and boundary data. The examples of conservation laws include multidimensional scalar equations, the system of nonlinear elasticity, and a class of (ProQuest: Formulae and/or non-USASCII text omitted; see image) systems with affine characteristic hypersurfaces. The analysis in (ProQuest: Formulae and/or non-USASCII text omitted; see image) also extends to (ProQuest: Formulae and/or non-USASCII text omitted; see image) .[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s002050050146 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_913488686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2552536331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-e3371947651b893d0ec8d850a648c8513e31f1f7f2b396142e9aa22e8916b3933</originalsourceid><addsrcrecordid>eNpVkE1LAzEQhoMoWKtH74t4jc5kdrOJN6mfUPCi5yXNTnTLdrcmbaX_3i0tiDAwzPDMM_AKcYlwgwDlbQJQUMBQmOsjMcKclARd0rEYAQBJW6jyVJylNN-NivRI3D00G46f3HmWC3ZpHTkLDbd1ylxXZ1_bJcdZ3zY-832XOG7cqum7rHU_6VycBNcmvjj0sfh4enyfvMjp2_Pr5H4qvbK4kkxUos1LXeDMWKqBvalNAU7nxpsCiQkDhjKoGVmNuWLrnFJsLOphQzQWV3vvMvbfa06rat6vYze8rCxSbow2eoDkHvKxTylyqJaxWbi4rRCqXTrVv3QG_vogdcm7NkTX-Sb9HQ3SUhH9AtLeYgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>913488686</pqid></control><display><type>article</type><title>Divergence-measure fields and hyperbolic conservation laws</title><source>Springer Nature - Complete Springer Journals</source><creator>CHEN, G.-Q ; FRID, H</creator><creatorcontrib>CHEN, G.-Q ; FRID, H</creatorcontrib><description>. We analyze a class of (ProQuest: Formulae and/or non-USASCII text omitted; see image) vector fields, called divergence-measure fields. We establish the Gauss-Green formula, the normal traces over subsets of Lipschitz boundaries, and the product rule for this class of (ProQuest: Formulae and/or non-USASCII text omitted; see image) fields. Then we apply this theory to analyze (ProQuest: Formulae and/or non-USASCII text omitted; see image) entropy solutions of initial-boundary-value problems for hyperbolic conservation laws and to study the ways in which the solutions assume their initial and boundary data. The examples of conservation laws include multidimensional scalar equations, the system of nonlinear elasticity, and a class of (ProQuest: Formulae and/or non-USASCII text omitted; see image) systems with affine characteristic hypersurfaces. The analysis in (ProQuest: Formulae and/or non-USASCII text omitted; see image) also extends to (ProQuest: Formulae and/or non-USASCII text omitted; see image) .[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s002050050146</identifier><identifier>CODEN: AVRMAW</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Conservation laws ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Mathematical methods in physics ; Numerical approximation and analysis ; Ordinary and partial differential equations, boundary value problems ; Physics ; Solid mechanics ; Static elasticity ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics</subject><ispartof>Archive for rational mechanics and analysis, 1999-06, Vol.147 (2), p.89-118</ispartof><rights>1999 INIST-CNRS</rights><rights>Springer-Verlag Berlin Heidelberg 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-e3371947651b893d0ec8d850a648c8513e31f1f7f2b396142e9aa22e8916b3933</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1868723$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>CHEN, G.-Q</creatorcontrib><creatorcontrib>FRID, H</creatorcontrib><title>Divergence-measure fields and hyperbolic conservation laws</title><title>Archive for rational mechanics and analysis</title><description>. We analyze a class of (ProQuest: Formulae and/or non-USASCII text omitted; see image) vector fields, called divergence-measure fields. We establish the Gauss-Green formula, the normal traces over subsets of Lipschitz boundaries, and the product rule for this class of (ProQuest: Formulae and/or non-USASCII text omitted; see image) fields. Then we apply this theory to analyze (ProQuest: Formulae and/or non-USASCII text omitted; see image) entropy solutions of initial-boundary-value problems for hyperbolic conservation laws and to study the ways in which the solutions assume their initial and boundary data. The examples of conservation laws include multidimensional scalar equations, the system of nonlinear elasticity, and a class of (ProQuest: Formulae and/or non-USASCII text omitted; see image) systems with affine characteristic hypersurfaces. The analysis in (ProQuest: Formulae and/or non-USASCII text omitted; see image) also extends to (ProQuest: Formulae and/or non-USASCII text omitted; see image) .[PUBLICATION ABSTRACT]</description><subject>Conservation laws</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical methods in physics</subject><subject>Numerical approximation and analysis</subject><subject>Ordinary and partial differential equations, boundary value problems</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Static elasticity</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpVkE1LAzEQhoMoWKtH74t4jc5kdrOJN6mfUPCi5yXNTnTLdrcmbaX_3i0tiDAwzPDMM_AKcYlwgwDlbQJQUMBQmOsjMcKclARd0rEYAQBJW6jyVJylNN-NivRI3D00G46f3HmWC3ZpHTkLDbd1ylxXZ1_bJcdZ3zY-832XOG7cqum7rHU_6VycBNcmvjj0sfh4enyfvMjp2_Pr5H4qvbK4kkxUos1LXeDMWKqBvalNAU7nxpsCiQkDhjKoGVmNuWLrnFJsLOphQzQWV3vvMvbfa06rat6vYze8rCxSbow2eoDkHvKxTylyqJaxWbi4rRCqXTrVv3QG_vogdcm7NkTX-Sb9HQ3SUhH9AtLeYgg</recordid><startdate>19990601</startdate><enddate>19990601</enddate><creator>CHEN, G.-Q</creator><creator>FRID, H</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>19990601</creationdate><title>Divergence-measure fields and hyperbolic conservation laws</title><author>CHEN, G.-Q ; FRID, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-e3371947651b893d0ec8d850a648c8513e31f1f7f2b396142e9aa22e8916b3933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Conservation laws</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical methods in physics</topic><topic>Numerical approximation and analysis</topic><topic>Ordinary and partial differential equations, boundary value problems</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Static elasticity</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CHEN, G.-Q</creatorcontrib><creatorcontrib>FRID, H</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CHEN, G.-Q</au><au>FRID, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Divergence-measure fields and hyperbolic conservation laws</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><date>1999-06-01</date><risdate>1999</risdate><volume>147</volume><issue>2</issue><spage>89</spage><epage>118</epage><pages>89-118</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><coden>AVRMAW</coden><abstract>. We analyze a class of (ProQuest: Formulae and/or non-USASCII text omitted; see image) vector fields, called divergence-measure fields. We establish the Gauss-Green formula, the normal traces over subsets of Lipschitz boundaries, and the product rule for this class of (ProQuest: Formulae and/or non-USASCII text omitted; see image) fields. Then we apply this theory to analyze (ProQuest: Formulae and/or non-USASCII text omitted; see image) entropy solutions of initial-boundary-value problems for hyperbolic conservation laws and to study the ways in which the solutions assume their initial and boundary data. The examples of conservation laws include multidimensional scalar equations, the system of nonlinear elasticity, and a class of (ProQuest: Formulae and/or non-USASCII text omitted; see image) systems with affine characteristic hypersurfaces. The analysis in (ProQuest: Formulae and/or non-USASCII text omitted; see image) also extends to (ProQuest: Formulae and/or non-USASCII text omitted; see image) .[PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><cop>Berlin</cop><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/s002050050146</doi><tpages>30</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-9527 |
ispartof | Archive for rational mechanics and analysis, 1999-06, Vol.147 (2), p.89-118 |
issn | 0003-9527 1432-0673 |
language | eng |
recordid | cdi_proquest_journals_913488686 |
source | Springer Nature - Complete Springer Journals |
subjects | Conservation laws Exact sciences and technology Fundamental areas of phenomenology (including applications) Mathematical methods in physics Numerical approximation and analysis Ordinary and partial differential equations, boundary value problems Physics Solid mechanics Static elasticity Static elasticity (thermoelasticity...) Structural and continuum mechanics |
title | Divergence-measure fields and hyperbolic conservation laws |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T21%3A56%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Divergence-measure%20fields%20and%20hyperbolic%20conservation%20laws&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=CHEN,%20G.-Q&rft.date=1999-06-01&rft.volume=147&rft.issue=2&rft.spage=89&rft.epage=118&rft.pages=89-118&rft.issn=0003-9527&rft.eissn=1432-0673&rft.coden=AVRMAW&rft_id=info:doi/10.1007/s002050050146&rft_dat=%3Cproquest_cross%3E2552536331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=913488686&rft_id=info:pmid/&rfr_iscdi=true |