Divergence-measure fields and hyperbolic conservation laws

. We analyze a class of (ProQuest: Formulae and/or non-USASCII text omitted; see image) vector fields, called divergence-measure fields. We establish the Gauss-Green formula, the normal traces over subsets of Lipschitz boundaries, and the product rule for this class of (ProQuest: Formulae and/or non...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 1999-06, Vol.147 (2), p.89-118
Hauptverfasser: CHEN, G.-Q, FRID, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 118
container_issue 2
container_start_page 89
container_title Archive for rational mechanics and analysis
container_volume 147
creator CHEN, G.-Q
FRID, H
description . We analyze a class of (ProQuest: Formulae and/or non-USASCII text omitted; see image) vector fields, called divergence-measure fields. We establish the Gauss-Green formula, the normal traces over subsets of Lipschitz boundaries, and the product rule for this class of (ProQuest: Formulae and/or non-USASCII text omitted; see image) fields. Then we apply this theory to analyze (ProQuest: Formulae and/or non-USASCII text omitted; see image) entropy solutions of initial-boundary-value problems for hyperbolic conservation laws and to study the ways in which the solutions assume their initial and boundary data. The examples of conservation laws include multidimensional scalar equations, the system of nonlinear elasticity, and a class of (ProQuest: Formulae and/or non-USASCII text omitted; see image) systems with affine characteristic hypersurfaces. The analysis in (ProQuest: Formulae and/or non-USASCII text omitted; see image) also extends to (ProQuest: Formulae and/or non-USASCII text omitted; see image) .[PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s002050050146
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_913488686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2552536331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-e3371947651b893d0ec8d850a648c8513e31f1f7f2b396142e9aa22e8916b3933</originalsourceid><addsrcrecordid>eNpVkE1LAzEQhoMoWKtH74t4jc5kdrOJN6mfUPCi5yXNTnTLdrcmbaX_3i0tiDAwzPDMM_AKcYlwgwDlbQJQUMBQmOsjMcKclARd0rEYAQBJW6jyVJylNN-NivRI3D00G46f3HmWC3ZpHTkLDbd1ylxXZ1_bJcdZ3zY-832XOG7cqum7rHU_6VycBNcmvjj0sfh4enyfvMjp2_Pr5H4qvbK4kkxUos1LXeDMWKqBvalNAU7nxpsCiQkDhjKoGVmNuWLrnFJsLOphQzQWV3vvMvbfa06rat6vYze8rCxSbow2eoDkHvKxTylyqJaxWbi4rRCqXTrVv3QG_vogdcm7NkTX-Sb9HQ3SUhH9AtLeYgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>913488686</pqid></control><display><type>article</type><title>Divergence-measure fields and hyperbolic conservation laws</title><source>Springer Nature - Complete Springer Journals</source><creator>CHEN, G.-Q ; FRID, H</creator><creatorcontrib>CHEN, G.-Q ; FRID, H</creatorcontrib><description>. We analyze a class of (ProQuest: Formulae and/or non-USASCII text omitted; see image) vector fields, called divergence-measure fields. We establish the Gauss-Green formula, the normal traces over subsets of Lipschitz boundaries, and the product rule for this class of (ProQuest: Formulae and/or non-USASCII text omitted; see image) fields. Then we apply this theory to analyze (ProQuest: Formulae and/or non-USASCII text omitted; see image) entropy solutions of initial-boundary-value problems for hyperbolic conservation laws and to study the ways in which the solutions assume their initial and boundary data. The examples of conservation laws include multidimensional scalar equations, the system of nonlinear elasticity, and a class of (ProQuest: Formulae and/or non-USASCII text omitted; see image) systems with affine characteristic hypersurfaces. The analysis in (ProQuest: Formulae and/or non-USASCII text omitted; see image) also extends to (ProQuest: Formulae and/or non-USASCII text omitted; see image) .[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s002050050146</identifier><identifier>CODEN: AVRMAW</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Conservation laws ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Mathematical methods in physics ; Numerical approximation and analysis ; Ordinary and partial differential equations, boundary value problems ; Physics ; Solid mechanics ; Static elasticity ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics</subject><ispartof>Archive for rational mechanics and analysis, 1999-06, Vol.147 (2), p.89-118</ispartof><rights>1999 INIST-CNRS</rights><rights>Springer-Verlag Berlin Heidelberg 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-e3371947651b893d0ec8d850a648c8513e31f1f7f2b396142e9aa22e8916b3933</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1868723$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>CHEN, G.-Q</creatorcontrib><creatorcontrib>FRID, H</creatorcontrib><title>Divergence-measure fields and hyperbolic conservation laws</title><title>Archive for rational mechanics and analysis</title><description>. We analyze a class of (ProQuest: Formulae and/or non-USASCII text omitted; see image) vector fields, called divergence-measure fields. We establish the Gauss-Green formula, the normal traces over subsets of Lipschitz boundaries, and the product rule for this class of (ProQuest: Formulae and/or non-USASCII text omitted; see image) fields. Then we apply this theory to analyze (ProQuest: Formulae and/or non-USASCII text omitted; see image) entropy solutions of initial-boundary-value problems for hyperbolic conservation laws and to study the ways in which the solutions assume their initial and boundary data. The examples of conservation laws include multidimensional scalar equations, the system of nonlinear elasticity, and a class of (ProQuest: Formulae and/or non-USASCII text omitted; see image) systems with affine characteristic hypersurfaces. The analysis in (ProQuest: Formulae and/or non-USASCII text omitted; see image) also extends to (ProQuest: Formulae and/or non-USASCII text omitted; see image) .[PUBLICATION ABSTRACT]</description><subject>Conservation laws</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical methods in physics</subject><subject>Numerical approximation and analysis</subject><subject>Ordinary and partial differential equations, boundary value problems</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Static elasticity</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpVkE1LAzEQhoMoWKtH74t4jc5kdrOJN6mfUPCi5yXNTnTLdrcmbaX_3i0tiDAwzPDMM_AKcYlwgwDlbQJQUMBQmOsjMcKclARd0rEYAQBJW6jyVJylNN-NivRI3D00G46f3HmWC3ZpHTkLDbd1ylxXZ1_bJcdZ3zY-832XOG7cqum7rHU_6VycBNcmvjj0sfh4enyfvMjp2_Pr5H4qvbK4kkxUos1LXeDMWKqBvalNAU7nxpsCiQkDhjKoGVmNuWLrnFJsLOphQzQWV3vvMvbfa06rat6vYze8rCxSbow2eoDkHvKxTylyqJaxWbi4rRCqXTrVv3QG_vogdcm7NkTX-Sb9HQ3SUhH9AtLeYgg</recordid><startdate>19990601</startdate><enddate>19990601</enddate><creator>CHEN, G.-Q</creator><creator>FRID, H</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>19990601</creationdate><title>Divergence-measure fields and hyperbolic conservation laws</title><author>CHEN, G.-Q ; FRID, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-e3371947651b893d0ec8d850a648c8513e31f1f7f2b396142e9aa22e8916b3933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Conservation laws</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical methods in physics</topic><topic>Numerical approximation and analysis</topic><topic>Ordinary and partial differential equations, boundary value problems</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Static elasticity</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CHEN, G.-Q</creatorcontrib><creatorcontrib>FRID, H</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CHEN, G.-Q</au><au>FRID, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Divergence-measure fields and hyperbolic conservation laws</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><date>1999-06-01</date><risdate>1999</risdate><volume>147</volume><issue>2</issue><spage>89</spage><epage>118</epage><pages>89-118</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><coden>AVRMAW</coden><abstract>. We analyze a class of (ProQuest: Formulae and/or non-USASCII text omitted; see image) vector fields, called divergence-measure fields. We establish the Gauss-Green formula, the normal traces over subsets of Lipschitz boundaries, and the product rule for this class of (ProQuest: Formulae and/or non-USASCII text omitted; see image) fields. Then we apply this theory to analyze (ProQuest: Formulae and/or non-USASCII text omitted; see image) entropy solutions of initial-boundary-value problems for hyperbolic conservation laws and to study the ways in which the solutions assume their initial and boundary data. The examples of conservation laws include multidimensional scalar equations, the system of nonlinear elasticity, and a class of (ProQuest: Formulae and/or non-USASCII text omitted; see image) systems with affine characteristic hypersurfaces. The analysis in (ProQuest: Formulae and/or non-USASCII text omitted; see image) also extends to (ProQuest: Formulae and/or non-USASCII text omitted; see image) .[PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><cop>Berlin</cop><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/s002050050146</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-9527
ispartof Archive for rational mechanics and analysis, 1999-06, Vol.147 (2), p.89-118
issn 0003-9527
1432-0673
language eng
recordid cdi_proquest_journals_913488686
source Springer Nature - Complete Springer Journals
subjects Conservation laws
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Mathematical methods in physics
Numerical approximation and analysis
Ordinary and partial differential equations, boundary value problems
Physics
Solid mechanics
Static elasticity
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
title Divergence-measure fields and hyperbolic conservation laws
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T21%3A56%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Divergence-measure%20fields%20and%20hyperbolic%20conservation%20laws&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=CHEN,%20G.-Q&rft.date=1999-06-01&rft.volume=147&rft.issue=2&rft.spage=89&rft.epage=118&rft.pages=89-118&rft.issn=0003-9527&rft.eissn=1432-0673&rft.coden=AVRMAW&rft_id=info:doi/10.1007/s002050050146&rft_dat=%3Cproquest_cross%3E2552536331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=913488686&rft_id=info:pmid/&rfr_iscdi=true