Reduced basis approximation of parametric eigenvalue problems in presence of clusters and intersections

In this paper we discuss reduced order models for the approximation of parametric eigenvalue problems. In particular, we are interested in the presence of intersections or clusters of eigenvalues. The singularities originating by these phenomena make it hard a straightforward generalization of well...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational & applied mathematics 2024-12, Vol.43 (8), Article 443
Hauptverfasser: Boffi, Daniele, Halim, Abdul, Priyadarshi, Gopal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Computational & applied mathematics
container_volume 43
creator Boffi, Daniele
Halim, Abdul
Priyadarshi, Gopal
description In this paper we discuss reduced order models for the approximation of parametric eigenvalue problems. In particular, we are interested in the presence of intersections or clusters of eigenvalues. The singularities originating by these phenomena make it hard a straightforward generalization of well known strategies normally used for standards PDEs. We investigate how the known results extend (or not) to higher order
doi_str_mv 10.1007/s40314-024-02917-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3121261431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121261431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-1eb249c844b0fa3cd8caa53de70700dd81f396199104c6a005d7e004e1adbfc93</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Fz9GZJNs_R1nUFRYE0XNIk-nSpdvWpJX125tawZuHkAf5vTeTx9g1wi0CZHdBgUTFQUynwIwfT9gCc8g4SBCnbCGEzLlMQZ6zixD2ADJDpRZs90putOSS0oQ6JKbvfXesD2aouzbpqqQ33hxo8LVNqN5R-2makZIIlQ0dQlK3UVOg1tJE22YMA_mY07r4NkmyU1S4ZGeVaQJd_d5L9v748Lbe8O3L0_P6fsutABg4UilUYXOlSqiMtC63xqykowwyAOdyrGSRYlEgKJsagJXLCEARGldWtpBLdjPnxhU_RgqD3nejb-NILVGgSFFJjJSYKeu7EDxVuvfx0_5LI-ipUD0XqmOh-qdQfYwmOZtChNsd-b_of1zfViF7cw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121261431</pqid></control><display><type>article</type><title>Reduced basis approximation of parametric eigenvalue problems in presence of clusters and intersections</title><source>Springer Nature - Complete Springer Journals</source><creator>Boffi, Daniele ; Halim, Abdul ; Priyadarshi, Gopal</creator><creatorcontrib>Boffi, Daniele ; Halim, Abdul ; Priyadarshi, Gopal</creatorcontrib><description>In this paper we discuss reduced order models for the approximation of parametric eigenvalue problems. In particular, we are interested in the presence of intersections or clusters of eigenvalues. The singularities originating by these phenomena make it hard a straightforward generalization of well known strategies normally used for standards PDEs. We investigate how the known results extend (or not) to higher order</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-024-02917-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Approximation ; Clusters ; Computational Mathematics and Numerical Analysis ; Eigenvalues ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics ; Reduced order models</subject><ispartof>Computational &amp; applied mathematics, 2024-12, Vol.43 (8), Article 443</ispartof><rights>The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-1eb249c844b0fa3cd8caa53de70700dd81f396199104c6a005d7e004e1adbfc93</cites><orcidid>0000-0003-0717-2940</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40314-024-02917-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40314-024-02917-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Boffi, Daniele</creatorcontrib><creatorcontrib>Halim, Abdul</creatorcontrib><creatorcontrib>Priyadarshi, Gopal</creatorcontrib><title>Reduced basis approximation of parametric eigenvalue problems in presence of clusters and intersections</title><title>Computational &amp; applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>In this paper we discuss reduced order models for the approximation of parametric eigenvalue problems. In particular, we are interested in the presence of intersections or clusters of eigenvalues. The singularities originating by these phenomena make it hard a straightforward generalization of well known strategies normally used for standards PDEs. We investigate how the known results extend (or not) to higher order</description><subject>Applications of Mathematics</subject><subject>Approximation</subject><subject>Clusters</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Eigenvalues</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Reduced order models</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Fz9GZJNs_R1nUFRYE0XNIk-nSpdvWpJX125tawZuHkAf5vTeTx9g1wi0CZHdBgUTFQUynwIwfT9gCc8g4SBCnbCGEzLlMQZ6zixD2ADJDpRZs90putOSS0oQ6JKbvfXesD2aouzbpqqQ33hxo8LVNqN5R-2makZIIlQ0dQlK3UVOg1tJE22YMA_mY07r4NkmyU1S4ZGeVaQJd_d5L9v748Lbe8O3L0_P6fsutABg4UilUYXOlSqiMtC63xqykowwyAOdyrGSRYlEgKJsagJXLCEARGldWtpBLdjPnxhU_RgqD3nejb-NILVGgSFFJjJSYKeu7EDxVuvfx0_5LI-ipUD0XqmOh-qdQfYwmOZtChNsd-b_of1zfViF7cw</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Boffi, Daniele</creator><creator>Halim, Abdul</creator><creator>Priyadarshi, Gopal</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0717-2940</orcidid></search><sort><creationdate>20241201</creationdate><title>Reduced basis approximation of parametric eigenvalue problems in presence of clusters and intersections</title><author>Boffi, Daniele ; Halim, Abdul ; Priyadarshi, Gopal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-1eb249c844b0fa3cd8caa53de70700dd81f396199104c6a005d7e004e1adbfc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications of Mathematics</topic><topic>Approximation</topic><topic>Clusters</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Eigenvalues</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Reduced order models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boffi, Daniele</creatorcontrib><creatorcontrib>Halim, Abdul</creatorcontrib><creatorcontrib>Priyadarshi, Gopal</creatorcontrib><collection>CrossRef</collection><jtitle>Computational &amp; applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boffi, Daniele</au><au>Halim, Abdul</au><au>Priyadarshi, Gopal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduced basis approximation of parametric eigenvalue problems in presence of clusters and intersections</atitle><jtitle>Computational &amp; applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>43</volume><issue>8</issue><artnum>443</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>In this paper we discuss reduced order models for the approximation of parametric eigenvalue problems. In particular, we are interested in the presence of intersections or clusters of eigenvalues. The singularities originating by these phenomena make it hard a straightforward generalization of well known strategies normally used for standards PDEs. We investigate how the known results extend (or not) to higher order</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-024-02917-x</doi><orcidid>https://orcid.org/0000-0003-0717-2940</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2238-3603
ispartof Computational & applied mathematics, 2024-12, Vol.43 (8), Article 443
issn 2238-3603
1807-0302
language eng
recordid cdi_proquest_journals_3121261431
source Springer Nature - Complete Springer Journals
subjects Applications of Mathematics
Approximation
Clusters
Computational Mathematics and Numerical Analysis
Eigenvalues
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
Mathematics
Mathematics and Statistics
Reduced order models
title Reduced basis approximation of parametric eigenvalue problems in presence of clusters and intersections
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-17T15%3A00%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduced%20basis%20approximation%20of%20parametric%20eigenvalue%20problems%20in%20presence%20of%20clusters%20and%20intersections&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Boffi,%20Daniele&rft.date=2024-12-01&rft.volume=43&rft.issue=8&rft.artnum=443&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-024-02917-x&rft_dat=%3Cproquest_cross%3E3121261431%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121261431&rft_id=info:pmid/&rfr_iscdi=true