Reduced basis approximation of parametric eigenvalue problems in presence of clusters and intersections

In this paper we discuss reduced order models for the approximation of parametric eigenvalue problems. In particular, we are interested in the presence of intersections or clusters of eigenvalues. The singularities originating by these phenomena make it hard a straightforward generalization of well...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational & applied mathematics 2024-12, Vol.43 (8), Article 443
Hauptverfasser: Boffi, Daniele, Halim, Abdul, Priyadarshi, Gopal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we discuss reduced order models for the approximation of parametric eigenvalue problems. In particular, we are interested in the presence of intersections or clusters of eigenvalues. The singularities originating by these phenomena make it hard a straightforward generalization of well known strategies normally used for standards PDEs. We investigate how the known results extend (or not) to higher order
ISSN:2238-3603
1807-0302
DOI:10.1007/s40314-024-02917-x