ON STRONGLY QUASILINEAR DEGENERATE ELLIPTIC SYSTEMS WITH WEAK MONOTONICITY AND NONLINEAR PHYSICAL DATA

This work is devoted to studying the quasilinear elliptic system - d i v a ( x , u , D u ) + | u | p - 2 u + b ( x , u , D u ) = v ( x ) + f ( x , u ) + d i v g ( x , u ) on a bounded open domain of R n with homogeneous Dirichlet boundary conditions. We show that there is a weak solution to this sys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2022-09, Vol.266 (4), p.576-592
Hauptverfasser: Hammar, Hasnae El, Allalou, Chakir, Melliani, Said
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 592
container_issue 4
container_start_page 576
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 266
creator Hammar, Hasnae El
Allalou, Chakir
Melliani, Said
description This work is devoted to studying the quasilinear elliptic system - d i v a ( x , u , D u ) + | u | p - 2 u + b ( x , u , D u ) = v ( x ) + f ( x , u ) + d i v g ( x , u ) on a bounded open domain of R n with homogeneous Dirichlet boundary conditions. We show that there is a weak solution to this system under regularity, growth, and coercivity conditions for a , but only with very moderate monotonicity assumptions. We prove the existence result by using Galerkin’s approximation and the theory of Young measures.
doi_str_mv 10.1007/s10958-022-05951-4
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2776067613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A737082658</galeid><sourcerecordid>A737082658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4174-3588d347af9d30c63846732ca4051e235fae9e1308a6b4ee78ef429d7643c0713</originalsourceid><addsrcrecordid>eNp9kk9r2zAYh81YYV3XL7CTYKcd1ErWXx9N4iWirtzGLiUnoTlycEnsVkpg-_ZTl0IJhKKDhHie3wsvvyT5jtEVRkhcB4wyJiFKU4hYxjCkn5JzzASBUmTsc3wjkUJCBP2SfA3hCUWJS3KedJUGdbOo9KxcgvuHvFal0kW-ANNiVuhikTcFKMpS3TVqAupl3RS3NXhUzRw8FvkNuK101VRaTVSzBLmeAl3pt4C7-bJWk7wE07zJvyVnnd0Ed_l2XyQPv4pmModlNXuFYEuxoJAwKVeECttlK4JaTiTlgqStpYhhlxLWWZc5TJC0_Dd1TkjX0TRbCU5JiwQmF8mPQ-6zH1_2LuzM07j3QxxpUiE44oJj8k6t7caZfujGnbfttg-tyQURSKacyUjBE9TaDc7bzTi4ro_fR_zVCT6eldv27Unh55EQmZ37s1vbfQhG1YtjNj2wrR9D8K4zz77fWv_XYGReK2AOFTCxAuZ_BQyNEjlIIcLD2vn3bXxg_QO3facI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2776067613</pqid></control><display><type>article</type><title>ON STRONGLY QUASILINEAR DEGENERATE ELLIPTIC SYSTEMS WITH WEAK MONOTONICITY AND NONLINEAR PHYSICAL DATA</title><source>Springer Nature - Complete Springer Journals</source><creator>Hammar, Hasnae El ; Allalou, Chakir ; Melliani, Said</creator><creatorcontrib>Hammar, Hasnae El ; Allalou, Chakir ; Melliani, Said</creatorcontrib><description>This work is devoted to studying the quasilinear elliptic system - d i v a ( x , u , D u ) + | u | p - 2 u + b ( x , u , D u ) = v ( x ) + f ( x , u ) + d i v g ( x , u ) on a bounded open domain of R n with homogeneous Dirichlet boundary conditions. We show that there is a weak solution to this system under regularity, growth, and coercivity conditions for a , but only with very moderate monotonicity assumptions. We prove the existence result by using Galerkin’s approximation and the theory of Young measures.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-022-05951-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Boundary conditions ; Coercivity ; Dirichlet problem ; Mathematics ; Mathematics and Statistics ; Original Paper</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2022-09, Vol.266 (4), p.576-592</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4174-3588d347af9d30c63846732ca4051e235fae9e1308a6b4ee78ef429d7643c0713</citedby><cites>FETCH-LOGICAL-c4174-3588d347af9d30c63846732ca4051e235fae9e1308a6b4ee78ef429d7643c0713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-022-05951-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-022-05951-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hammar, Hasnae El</creatorcontrib><creatorcontrib>Allalou, Chakir</creatorcontrib><creatorcontrib>Melliani, Said</creatorcontrib><title>ON STRONGLY QUASILINEAR DEGENERATE ELLIPTIC SYSTEMS WITH WEAK MONOTONICITY AND NONLINEAR PHYSICAL DATA</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>This work is devoted to studying the quasilinear elliptic system - d i v a ( x , u , D u ) + | u | p - 2 u + b ( x , u , D u ) = v ( x ) + f ( x , u ) + d i v g ( x , u ) on a bounded open domain of R n with homogeneous Dirichlet boundary conditions. We show that there is a weak solution to this system under regularity, growth, and coercivity conditions for a , but only with very moderate monotonicity assumptions. We prove the existence result by using Galerkin’s approximation and the theory of Young measures.</description><subject>Boundary conditions</subject><subject>Coercivity</subject><subject>Dirichlet problem</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kk9r2zAYh81YYV3XL7CTYKcd1ErWXx9N4iWirtzGLiUnoTlycEnsVkpg-_ZTl0IJhKKDhHie3wsvvyT5jtEVRkhcB4wyJiFKU4hYxjCkn5JzzASBUmTsc3wjkUJCBP2SfA3hCUWJS3KedJUGdbOo9KxcgvuHvFal0kW-ANNiVuhikTcFKMpS3TVqAupl3RS3NXhUzRw8FvkNuK101VRaTVSzBLmeAl3pt4C7-bJWk7wE07zJvyVnnd0Ed_l2XyQPv4pmModlNXuFYEuxoJAwKVeECttlK4JaTiTlgqStpYhhlxLWWZc5TJC0_Dd1TkjX0TRbCU5JiwQmF8mPQ-6zH1_2LuzM07j3QxxpUiE44oJj8k6t7caZfujGnbfttg-tyQURSKacyUjBE9TaDc7bzTi4ro_fR_zVCT6eldv27Unh55EQmZ37s1vbfQhG1YtjNj2wrR9D8K4zz77fWv_XYGReK2AOFTCxAuZ_BQyNEjlIIcLD2vn3bXxg_QO3facI</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Hammar, Hasnae El</creator><creator>Allalou, Chakir</creator><creator>Melliani, Said</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20220901</creationdate><title>ON STRONGLY QUASILINEAR DEGENERATE ELLIPTIC SYSTEMS WITH WEAK MONOTONICITY AND NONLINEAR PHYSICAL DATA</title><author>Hammar, Hasnae El ; Allalou, Chakir ; Melliani, Said</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4174-3588d347af9d30c63846732ca4051e235fae9e1308a6b4ee78ef429d7643c0713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boundary conditions</topic><topic>Coercivity</topic><topic>Dirichlet problem</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hammar, Hasnae El</creatorcontrib><creatorcontrib>Allalou, Chakir</creatorcontrib><creatorcontrib>Melliani, Said</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hammar, Hasnae El</au><au>Allalou, Chakir</au><au>Melliani, Said</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON STRONGLY QUASILINEAR DEGENERATE ELLIPTIC SYSTEMS WITH WEAK MONOTONICITY AND NONLINEAR PHYSICAL DATA</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>266</volume><issue>4</issue><spage>576</spage><epage>592</epage><pages>576-592</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>This work is devoted to studying the quasilinear elliptic system - d i v a ( x , u , D u ) + | u | p - 2 u + b ( x , u , D u ) = v ( x ) + f ( x , u ) + d i v g ( x , u ) on a bounded open domain of R n with homogeneous Dirichlet boundary conditions. We show that there is a weak solution to this system under regularity, growth, and coercivity conditions for a , but only with very moderate monotonicity assumptions. We prove the existence result by using Galerkin’s approximation and the theory of Young measures.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10958-022-05951-4</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2022-09, Vol.266 (4), p.576-592
issn 1072-3374
1573-8795
language eng
recordid cdi_proquest_journals_2776067613
source Springer Nature - Complete Springer Journals
subjects Boundary conditions
Coercivity
Dirichlet problem
Mathematics
Mathematics and Statistics
Original Paper
title ON STRONGLY QUASILINEAR DEGENERATE ELLIPTIC SYSTEMS WITH WEAK MONOTONICITY AND NONLINEAR PHYSICAL DATA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T23%3A42%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20STRONGLY%20QUASILINEAR%20DEGENERATE%20ELLIPTIC%20SYSTEMS%20WITH%20WEAK%20MONOTONICITY%20AND%20NONLINEAR%20PHYSICAL%20DATA&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Hammar,%20Hasnae%20El&rft.date=2022-09-01&rft.volume=266&rft.issue=4&rft.spage=576&rft.epage=592&rft.pages=576-592&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-022-05951-4&rft_dat=%3Cgale_proqu%3EA737082658%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2776067613&rft_id=info:pmid/&rft_galeid=A737082658&rfr_iscdi=true