ON STRONGLY QUASILINEAR DEGENERATE ELLIPTIC SYSTEMS WITH WEAK MONOTONICITY AND NONLINEAR PHYSICAL DATA
This work is devoted to studying the quasilinear elliptic system - d i v a ( x , u , D u ) + | u | p - 2 u + b ( x , u , D u ) = v ( x ) + f ( x , u ) + d i v g ( x , u ) on a bounded open domain of R n with homogeneous Dirichlet boundary conditions. We show that there is a weak solution to this sys...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2022-09, Vol.266 (4), p.576-592 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work is devoted to studying the quasilinear elliptic system
-
d
i
v
a
(
x
,
u
,
D
u
)
+
|
u
|
p
-
2
u
+
b
(
x
,
u
,
D
u
)
=
v
(
x
)
+
f
(
x
,
u
)
+
d
i
v
g
(
x
,
u
)
on a bounded open domain of
R
n
with homogeneous Dirichlet boundary conditions. We show that there is a weak solution to this system under regularity, growth, and coercivity conditions for
a
, but only with very moderate monotonicity assumptions. We prove the existence result by using Galerkin’s approximation and the theory of Young measures. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-022-05951-4 |