ON STRONGLY QUASILINEAR DEGENERATE ELLIPTIC SYSTEMS WITH WEAK MONOTONICITY AND NONLINEAR PHYSICAL DATA

This work is devoted to studying the quasilinear elliptic system - d i v a ( x , u , D u ) + | u | p - 2 u + b ( x , u , D u ) = v ( x ) + f ( x , u ) + d i v g ( x , u ) on a bounded open domain of R n with homogeneous Dirichlet boundary conditions. We show that there is a weak solution to this sys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2022-09, Vol.266 (4), p.576-592
Hauptverfasser: Hammar, Hasnae El, Allalou, Chakir, Melliani, Said
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work is devoted to studying the quasilinear elliptic system - d i v a ( x , u , D u ) + | u | p - 2 u + b ( x , u , D u ) = v ( x ) + f ( x , u ) + d i v g ( x , u ) on a bounded open domain of R n with homogeneous Dirichlet boundary conditions. We show that there is a weak solution to this system under regularity, growth, and coercivity conditions for a , but only with very moderate monotonicity assumptions. We prove the existence result by using Galerkin’s approximation and the theory of Young measures.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-022-05951-4