Dynamic Model Metallo‐Supramolecular Dual‐Network Hydrogels with Independently Tunable Network Crosslinks

ABSTRACT Hybrid polymer networks emerge between chemical and physical crosslinking, where two different modes of chain connectivity control the material behavior. However, rational relations between their microstructural characteristics, supramolecular kinetics, and the resulting network mechanics a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of polymer science (2020) 2020-01, Vol.58 (2), p.330-342
Hauptverfasser: Ahmadi, Mostafa, Seiffert, Sebastian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 342
container_issue 2
container_start_page 330
container_title Journal of polymer science (2020)
container_volume 58
creator Ahmadi, Mostafa
Seiffert, Sebastian
description ABSTRACT Hybrid polymer networks emerge between chemical and physical crosslinking, where two different modes of chain connectivity control the material behavior. However, rational relations between their microstructural characteristics, supramolecular kinetics, and the resulting network mechanics and dynamics are not well developed. To address this shortcoming, this study introduces a material platform based on a model dual‐network hydrogel, comprising independently tunable chemical and physical crosslinks. The idea is realized by a click reaction between a tetra‐PEG and a linear‐PEG precursor, whereby the linear block also carries a terpyridine ligand at each end that can form additional physical crosslinks by metal ion–bis(terpyridine) complexation. We change the number of chemical crosslinks by varying the molar mass of the tetra‐PEG, and we independently tune the metallo‐supramolecular bonds by using different metal ions, Mn2+, Zn2+, Co2+, and Ni2+. Based on that modular approach, we study the rheological behavior and the diffusivity of fluorescent polymeric tracers. The dissociation of the metallo‐supramolecular bonds provides a relaxation step, whose timescale and intensity are quantified by a sticky Rouse model. These two characteristics differ not only depending on the metal ion but also according to the chemical network mesh size, which highlights an interplay between the chemical and physical crosslinks. © 2020 The Authors. Journal of Polymer Science Part A: Polymer Chemistry published by Wiley Periodicals, Inc. J. Polym. Sci. 2020, 58, 330–342 A model dual‐network hydrogel is synthesized by combining tetra‐PEG chemistry and metallo‐supramolecular crosslinking, using terpyridine ligand and different metal ions. The study of the macroscopic rheological behavior and microscopic diffusivity of the samples, along with independent manipulation of the density of the chemical crosslinks and the strength of the supramolecular bonds, reveal that the number and lifetime of metal–ligand complexes depend not only on the utilized metal ion, but also on the network structure.
doi_str_mv 10.1002/pol.20190076
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2721322312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2721322312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3455-53f35bc0250dcb0928c35a693480eabffa79d4590e055e5f05456597f555580a3</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRS0EElXpjgNYYkvLxI6Telm1QCu1FImytpzEgbROHOxEVXYcgTNyElyVsmQWM6PR0_yvj9B1AKMAgNzVRo8IBBwgjs5Qj0QhGYZBxM__dgaXaODcFjxOWRRC1EPlrKtkWaR4ZTKl8Uo1Umvz_fn10tZWlkartNXS4lkrtb8-qWZv7A7Pu8yaN6Ud3hfNO15UmaqVb1WjO7xpK5lohU_w1BrndFHt3BW6yKV2avA7--j14X4znQ-X68fFdLIcpjRkbMhoTlmSAmGQpQlwMk4pkxGn4RiUTPJcxjwLGQcFjCmWAwtZxHicM19jkLSPbo5_a2s-WuUasTWtrbykIDEJKCE0IJ66PVLpwaBVuahtUUrbiQDEIVPhMxWnTD1Oj_i-0Kr7lxXP6-WEcO-G_gB-wnvn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721322312</pqid></control><display><type>article</type><title>Dynamic Model Metallo‐Supramolecular Dual‐Network Hydrogels with Independently Tunable Network Crosslinks</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ahmadi, Mostafa ; Seiffert, Sebastian</creator><creatorcontrib>Ahmadi, Mostafa ; Seiffert, Sebastian</creatorcontrib><description>ABSTRACT Hybrid polymer networks emerge between chemical and physical crosslinking, where two different modes of chain connectivity control the material behavior. However, rational relations between their microstructural characteristics, supramolecular kinetics, and the resulting network mechanics and dynamics are not well developed. To address this shortcoming, this study introduces a material platform based on a model dual‐network hydrogel, comprising independently tunable chemical and physical crosslinks. The idea is realized by a click reaction between a tetra‐PEG and a linear‐PEG precursor, whereby the linear block also carries a terpyridine ligand at each end that can form additional physical crosslinks by metal ion–bis(terpyridine) complexation. We change the number of chemical crosslinks by varying the molar mass of the tetra‐PEG, and we independently tune the metallo‐supramolecular bonds by using different metal ions, Mn2+, Zn2+, Co2+, and Ni2+. Based on that modular approach, we study the rheological behavior and the diffusivity of fluorescent polymeric tracers. The dissociation of the metallo‐supramolecular bonds provides a relaxation step, whose timescale and intensity are quantified by a sticky Rouse model. These two characteristics differ not only depending on the metal ion but also according to the chemical network mesh size, which highlights an interplay between the chemical and physical crosslinks. © 2020 The Authors. Journal of Polymer Science Part A: Polymer Chemistry published by Wiley Periodicals, Inc. J. Polym. Sci. 2020, 58, 330–342 A model dual‐network hydrogel is synthesized by combining tetra‐PEG chemistry and metallo‐supramolecular crosslinking, using terpyridine ligand and different metal ions. The study of the macroscopic rheological behavior and microscopic diffusivity of the samples, along with independent manipulation of the density of the chemical crosslinks and the strength of the supramolecular bonds, reveal that the number and lifetime of metal–ligand complexes depend not only on the utilized metal ion, but also on the network structure.</description><identifier>ISSN: 2642-4150</identifier><identifier>EISSN: 2642-4169</identifier><identifier>DOI: 10.1002/pol.20190076</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Chemical reactions ; click reaction ; Cobalt ; Crosslinking ; diffusivity ; dual networks ; Dynamic models ; dynamics ; Finite element method ; Fluorescence ; hydrogel ; Hydrogels ; Manganese ions ; Metal ions ; Metallography ; Polymer chemistry ; Polymers ; Rheological properties ; rheology ; supramolecular polymer network ; tracer diffusion</subject><ispartof>Journal of polymer science (2020), 2020-01, Vol.58 (2), p.330-342</ispartof><rights>2020 The Authors. published by Wiley Periodicals, Inc.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3455-53f35bc0250dcb0928c35a693480eabffa79d4590e055e5f05456597f555580a3</citedby><cites>FETCH-LOGICAL-c3455-53f35bc0250dcb0928c35a693480eabffa79d4590e055e5f05456597f555580a3</cites><orcidid>0000-0002-5152-1207 ; 0000-0001-6652-4067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpol.20190076$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpol.20190076$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Ahmadi, Mostafa</creatorcontrib><creatorcontrib>Seiffert, Sebastian</creatorcontrib><title>Dynamic Model Metallo‐Supramolecular Dual‐Network Hydrogels with Independently Tunable Network Crosslinks</title><title>Journal of polymer science (2020)</title><description>ABSTRACT Hybrid polymer networks emerge between chemical and physical crosslinking, where two different modes of chain connectivity control the material behavior. However, rational relations between their microstructural characteristics, supramolecular kinetics, and the resulting network mechanics and dynamics are not well developed. To address this shortcoming, this study introduces a material platform based on a model dual‐network hydrogel, comprising independently tunable chemical and physical crosslinks. The idea is realized by a click reaction between a tetra‐PEG and a linear‐PEG precursor, whereby the linear block also carries a terpyridine ligand at each end that can form additional physical crosslinks by metal ion–bis(terpyridine) complexation. We change the number of chemical crosslinks by varying the molar mass of the tetra‐PEG, and we independently tune the metallo‐supramolecular bonds by using different metal ions, Mn2+, Zn2+, Co2+, and Ni2+. Based on that modular approach, we study the rheological behavior and the diffusivity of fluorescent polymeric tracers. The dissociation of the metallo‐supramolecular bonds provides a relaxation step, whose timescale and intensity are quantified by a sticky Rouse model. These two characteristics differ not only depending on the metal ion but also according to the chemical network mesh size, which highlights an interplay between the chemical and physical crosslinks. © 2020 The Authors. Journal of Polymer Science Part A: Polymer Chemistry published by Wiley Periodicals, Inc. J. Polym. Sci. 2020, 58, 330–342 A model dual‐network hydrogel is synthesized by combining tetra‐PEG chemistry and metallo‐supramolecular crosslinking, using terpyridine ligand and different metal ions. The study of the macroscopic rheological behavior and microscopic diffusivity of the samples, along with independent manipulation of the density of the chemical crosslinks and the strength of the supramolecular bonds, reveal that the number and lifetime of metal–ligand complexes depend not only on the utilized metal ion, but also on the network structure.</description><subject>Chemical reactions</subject><subject>click reaction</subject><subject>Cobalt</subject><subject>Crosslinking</subject><subject>diffusivity</subject><subject>dual networks</subject><subject>Dynamic models</subject><subject>dynamics</subject><subject>Finite element method</subject><subject>Fluorescence</subject><subject>hydrogel</subject><subject>Hydrogels</subject><subject>Manganese ions</subject><subject>Metal ions</subject><subject>Metallography</subject><subject>Polymer chemistry</subject><subject>Polymers</subject><subject>Rheological properties</subject><subject>rheology</subject><subject>supramolecular polymer network</subject><subject>tracer diffusion</subject><issn>2642-4150</issn><issn>2642-4169</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kEFOwzAQRS0EElXpjgNYYkvLxI6Telm1QCu1FImytpzEgbROHOxEVXYcgTNyElyVsmQWM6PR0_yvj9B1AKMAgNzVRo8IBBwgjs5Qj0QhGYZBxM__dgaXaODcFjxOWRRC1EPlrKtkWaR4ZTKl8Uo1Umvz_fn10tZWlkartNXS4lkrtb8-qWZv7A7Pu8yaN6Ud3hfNO15UmaqVb1WjO7xpK5lohU_w1BrndFHt3BW6yKV2avA7--j14X4znQ-X68fFdLIcpjRkbMhoTlmSAmGQpQlwMk4pkxGn4RiUTPJcxjwLGQcFjCmWAwtZxHicM19jkLSPbo5_a2s-WuUasTWtrbykIDEJKCE0IJ66PVLpwaBVuahtUUrbiQDEIVPhMxWnTD1Oj_i-0Kr7lxXP6-WEcO-G_gB-wnvn</recordid><startdate>20200115</startdate><enddate>20200115</enddate><creator>Ahmadi, Mostafa</creator><creator>Seiffert, Sebastian</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5152-1207</orcidid><orcidid>https://orcid.org/0000-0001-6652-4067</orcidid></search><sort><creationdate>20200115</creationdate><title>Dynamic Model Metallo‐Supramolecular Dual‐Network Hydrogels with Independently Tunable Network Crosslinks</title><author>Ahmadi, Mostafa ; Seiffert, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3455-53f35bc0250dcb0928c35a693480eabffa79d4590e055e5f05456597f555580a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical reactions</topic><topic>click reaction</topic><topic>Cobalt</topic><topic>Crosslinking</topic><topic>diffusivity</topic><topic>dual networks</topic><topic>Dynamic models</topic><topic>dynamics</topic><topic>Finite element method</topic><topic>Fluorescence</topic><topic>hydrogel</topic><topic>Hydrogels</topic><topic>Manganese ions</topic><topic>Metal ions</topic><topic>Metallography</topic><topic>Polymer chemistry</topic><topic>Polymers</topic><topic>Rheological properties</topic><topic>rheology</topic><topic>supramolecular polymer network</topic><topic>tracer diffusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmadi, Mostafa</creatorcontrib><creatorcontrib>Seiffert, Sebastian</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of polymer science (2020)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmadi, Mostafa</au><au>Seiffert, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Model Metallo‐Supramolecular Dual‐Network Hydrogels with Independently Tunable Network Crosslinks</atitle><jtitle>Journal of polymer science (2020)</jtitle><date>2020-01-15</date><risdate>2020</risdate><volume>58</volume><issue>2</issue><spage>330</spage><epage>342</epage><pages>330-342</pages><issn>2642-4150</issn><eissn>2642-4169</eissn><abstract>ABSTRACT Hybrid polymer networks emerge between chemical and physical crosslinking, where two different modes of chain connectivity control the material behavior. However, rational relations between their microstructural characteristics, supramolecular kinetics, and the resulting network mechanics and dynamics are not well developed. To address this shortcoming, this study introduces a material platform based on a model dual‐network hydrogel, comprising independently tunable chemical and physical crosslinks. The idea is realized by a click reaction between a tetra‐PEG and a linear‐PEG precursor, whereby the linear block also carries a terpyridine ligand at each end that can form additional physical crosslinks by metal ion–bis(terpyridine) complexation. We change the number of chemical crosslinks by varying the molar mass of the tetra‐PEG, and we independently tune the metallo‐supramolecular bonds by using different metal ions, Mn2+, Zn2+, Co2+, and Ni2+. Based on that modular approach, we study the rheological behavior and the diffusivity of fluorescent polymeric tracers. The dissociation of the metallo‐supramolecular bonds provides a relaxation step, whose timescale and intensity are quantified by a sticky Rouse model. These two characteristics differ not only depending on the metal ion but also according to the chemical network mesh size, which highlights an interplay between the chemical and physical crosslinks. © 2020 The Authors. Journal of Polymer Science Part A: Polymer Chemistry published by Wiley Periodicals, Inc. J. Polym. Sci. 2020, 58, 330–342 A model dual‐network hydrogel is synthesized by combining tetra‐PEG chemistry and metallo‐supramolecular crosslinking, using terpyridine ligand and different metal ions. The study of the macroscopic rheological behavior and microscopic diffusivity of the samples, along with independent manipulation of the density of the chemical crosslinks and the strength of the supramolecular bonds, reveal that the number and lifetime of metal–ligand complexes depend not only on the utilized metal ion, but also on the network structure.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/pol.20190076</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5152-1207</orcidid><orcidid>https://orcid.org/0000-0001-6652-4067</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2642-4150
ispartof Journal of polymer science (2020), 2020-01, Vol.58 (2), p.330-342
issn 2642-4150
2642-4169
language eng
recordid cdi_proquest_journals_2721322312
source Wiley Online Library Journals Frontfile Complete
subjects Chemical reactions
click reaction
Cobalt
Crosslinking
diffusivity
dual networks
Dynamic models
dynamics
Finite element method
Fluorescence
hydrogel
Hydrogels
Manganese ions
Metal ions
Metallography
Polymer chemistry
Polymers
Rheological properties
rheology
supramolecular polymer network
tracer diffusion
title Dynamic Model Metallo‐Supramolecular Dual‐Network Hydrogels with Independently Tunable Network Crosslinks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-17T21%3A08%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Model%20Metallo%E2%80%90Supramolecular%20Dual%E2%80%90Network%20Hydrogels%20with%20Independently%20Tunable%20Network%20Crosslinks&rft.jtitle=Journal%20of%20polymer%20science%20(2020)&rft.au=Ahmadi,%20Mostafa&rft.date=2020-01-15&rft.volume=58&rft.issue=2&rft.spage=330&rft.epage=342&rft.pages=330-342&rft.issn=2642-4150&rft.eissn=2642-4169&rft_id=info:doi/10.1002/pol.20190076&rft_dat=%3Cproquest_cross%3E2721322312%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2721322312&rft_id=info:pmid/&rfr_iscdi=true