Dynamic Model Metallo‐Supramolecular Dual‐Network Hydrogels with Independently Tunable Network Crosslinks
ABSTRACT Hybrid polymer networks emerge between chemical and physical crosslinking, where two different modes of chain connectivity control the material behavior. However, rational relations between their microstructural characteristics, supramolecular kinetics, and the resulting network mechanics a...
Gespeichert in:
Veröffentlicht in: | Journal of polymer science (2020) 2020-01, Vol.58 (2), p.330-342 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACT
Hybrid polymer networks emerge between chemical and physical crosslinking, where two different modes of chain connectivity control the material behavior. However, rational relations between their microstructural characteristics, supramolecular kinetics, and the resulting network mechanics and dynamics are not well developed. To address this shortcoming, this study introduces a material platform based on a model dual‐network hydrogel, comprising independently tunable chemical and physical crosslinks. The idea is realized by a click reaction between a tetra‐PEG and a linear‐PEG precursor, whereby the linear block also carries a terpyridine ligand at each end that can form additional physical crosslinks by metal ion–bis(terpyridine) complexation. We change the number of chemical crosslinks by varying the molar mass of the tetra‐PEG, and we independently tune the metallo‐supramolecular bonds by using different metal ions, Mn2+, Zn2+, Co2+, and Ni2+. Based on that modular approach, we study the rheological behavior and the diffusivity of fluorescent polymeric tracers. The dissociation of the metallo‐supramolecular bonds provides a relaxation step, whose timescale and intensity are quantified by a sticky Rouse model. These two characteristics differ not only depending on the metal ion but also according to the chemical network mesh size, which highlights an interplay between the chemical and physical crosslinks. © 2020 The Authors. Journal of Polymer Science Part A: Polymer Chemistry published by Wiley Periodicals, Inc. J. Polym. Sci. 2020, 58, 330–342
A model dual‐network hydrogel is synthesized by combining tetra‐PEG chemistry and metallo‐supramolecular crosslinking, using terpyridine ligand and different metal ions. The study of the macroscopic rheological behavior and microscopic diffusivity of the samples, along with independent manipulation of the density of the chemical crosslinks and the strength of the supramolecular bonds, reveal that the number and lifetime of metal–ligand complexes depend not only on the utilized metal ion, but also on the network structure. |
---|---|
ISSN: | 2642-4150 2642-4169 |
DOI: | 10.1002/pol.20190076 |