Correlations between first order echotextural characteristics and chemical composition of pectoralis major muscles in broiler chickens receiving different dietary fat supplements

This study examined the quantitative relationships among ultrasonographic image attributes and chemical composition of the pectoralis major muscles in broiler chickens that received four different dietary fat supplements (Group SO: soybean oil; Group FO: flaxseed oil; Group SO+FO: soybean oil+flaxse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of animal science 2022-04, Vol.22 (2), p.803-813
Hauptverfasser: Ahmadi, Bahareh, Jamieson, Mark, Ahmadi, Behnaz, Połtowicz, Katarzyna, Nowak, Joanna, Murawski, Maciej, Małopolska, Martyna, Schwarz, Tomasz, Bartlewski, Pawel M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study examined the quantitative relationships among ultrasonographic image attributes and chemical composition of the pectoralis major muscles in broiler chickens that received four different dietary fat supplements (Group SO: soybean oil; Group FO: flaxseed oil; Group SO+FO: soybean oil+flaxseed oil; and Group BT: beef tallow; n=10 birds/group). Ultrasonograms of birds’ pectoral muscles, in a transverse (T) and longitudinal (L) plane, were obtained just before slaughter at 6 weeks of age and were subjected to digital image analyses to determine mean pixel intensity (MPI) and pixel heterogeneity values (standard deviation of numerical pixel values; MPH; a.k.a first order echotextural characteristics). Thirty-eight chemical characteristics of the muscles were determined post-mortem (crude fat, protein, and dry matter as well as fatty acid profiles) and were analyzed for correlations with the echotextural variables. A total of 12 (L-MPI: 7; L-MPH: 4; and T-MPH: 1 correlation), 5 (L-MPI: 2; L-MPH: 2; and T-MPI: 1 correlation), 15 (L-MPI: 10; T-MPI: 4; and T-MPH: 1 correlation) and 8 (L-MPI: 2; L-MPH: 1; and T-MPH: 5 correlations) significant correlations were recorded in Groups SO, FO, SO+FO and BT, respectively. When the data were pooled for all 40 birds studied, significant correlations with echotextural attributes were recorded for eighteen different chemical constituents, with the strongest overall correlation found between crude fat content and T-MPI (r=0.52, P=0.0005). In conclusion, there exists a potential application for ultrasonographic imaging combined with computerized image analysis to estimate certain chemical constituents of pectoralis major muscles in broiler chickens. However, the existence and strength of correlations among ultrasonographic image attributes and muscle composition are affected by the source of dietary fat and relative abundance (“threshold concentrations”) of individual chemical components.
ISSN:2300-8733
1642-3402
2300-8733
DOI:10.2478/aoas-2021-0074