Inversion detection of transformer transient hot spot temperature

This paper proposes an inversion method to estimate a 10 kV oil-immersed transformer transient hot spot temperature (HST). A set of transient feature quantities which can reflect the load change are proposed, those quantities as well as the real time load rate and feature temperature points on the t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021-01, Vol.9, p.1-1
Hauptverfasser: Ruan, Jiangjun, Deng, Yongqing, Quan, Yu, Gong, Ruohan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes an inversion method to estimate a 10 kV oil-immersed transformer transient hot spot temperature (HST). A set of transient feature quantities which can reflect the load change are proposed, those quantities as well as the real time load rate and feature temperature points on the transformer iron shell are taken as the input parameters of a machine learning model established by support vector regression (SVR), thus to describe their relationships with the transformer transient HST. K-fold cross-validation training method and grid search (GS) parameters optimization method are used to find the optimal parameters of the SVR model, the HST inversion results agree well with the transformer temperature rise test data which are conducted with short circuit method, and the HST inversion results outperform the results obtained with GA-BPNN method. The mean absolute percentage error (MAPE) is 1.66 %, and the maximum temperature difference is 2.93 °C.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2021.3049235