Inversion detection of transformer transient hot spot temperature
This paper proposes an inversion method to estimate a 10 kV oil-immersed transformer transient hot spot temperature (HST). A set of transient feature quantities which can reflect the load change are proposed, those quantities as well as the real time load rate and feature temperature points on the t...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021-01, Vol.9, p.1-1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 9 |
creator | Ruan, Jiangjun Deng, Yongqing Quan, Yu Gong, Ruohan |
description | This paper proposes an inversion method to estimate a 10 kV oil-immersed transformer transient hot spot temperature (HST). A set of transient feature quantities which can reflect the load change are proposed, those quantities as well as the real time load rate and feature temperature points on the transformer iron shell are taken as the input parameters of a machine learning model established by support vector regression (SVR), thus to describe their relationships with the transformer transient HST. K-fold cross-validation training method and grid search (GS) parameters optimization method are used to find the optimal parameters of the SVR model, the HST inversion results agree well with the transformer temperature rise test data which are conducted with short circuit method, and the HST inversion results outperform the results obtained with GA-BPNN method. The mean absolute percentage error (MAPE) is 1.66 %, and the maximum temperature difference is 2.93 °C. |
doi_str_mv | 10.1109/ACCESS.2021.3049235 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2478140325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9313995</ieee_id><doaj_id>oai_doaj_org_article_6214c52c789348e3b1978110ad303890</doaj_id><sourcerecordid>2478140325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-f572db17cf2c991ac5d90a52098176b1123138ffbc6ad181b1b81d1092d2dfbd3</originalsourceid><addsrcrecordid>eNpNUE1LAzEQDaJgqf0FvSx4bs0km93kWJaqhYKH6jlk86Fb2s2apIL_3tQt4hwyj-G9N5mH0BzwEgCLh1XTrHe7JcEElhSXglB2hSYEKrGgjFbX__AtmsW4x7l4HrF6glab_suG2Pm-MDZZnc7IuyIF1Ufnw9GGEXe2T8WHT0Uc8pPscbBBpVOwd-jGqUO0s0uforfH9WvzvNi-PG2a1XahS8zTwrGamBZq7YgWApRmRmDFCBYc6qoFIBQod67VlTLAoYWWg8n3EUOMaw2dos3oa7zayyF0RxW-pVed_B348C5VSJ0-WFkRKDUjuuaCltzSFkTNc1bKUEy5wNnrfvQagv882Zjk3p9Cn78vSZmpJaaEZRYdWTr4GIN1f1sBy3P0coxenqOXl-izaj6qOmvtn0Lk64Rg9AdKPn5X</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478140325</pqid></control><display><type>article</type><title>Inversion detection of transformer transient hot spot temperature</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ruan, Jiangjun ; Deng, Yongqing ; Quan, Yu ; Gong, Ruohan</creator><creatorcontrib>Ruan, Jiangjun ; Deng, Yongqing ; Quan, Yu ; Gong, Ruohan</creatorcontrib><description>This paper proposes an inversion method to estimate a 10 kV oil-immersed transformer transient hot spot temperature (HST). A set of transient feature quantities which can reflect the load change are proposed, those quantities as well as the real time load rate and feature temperature points on the transformer iron shell are taken as the input parameters of a machine learning model established by support vector regression (SVR), thus to describe their relationships with the transformer transient HST. K-fold cross-validation training method and grid search (GS) parameters optimization method are used to find the optimal parameters of the SVR model, the HST inversion results agree well with the transformer temperature rise test data which are conducted with short circuit method, and the HST inversion results outperform the results obtained with GA-BPNN method. The mean absolute percentage error (MAPE) is 1.66 %, and the maximum temperature difference is 2.93 °C.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3049235</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Load modeling ; Machine learning ; Mathematical models ; Oil insulation ; oil-immersed transformer ; Optimization ; Parameters ; Power transformer insulation ; Short circuits ; Support vector machines ; support vector regression ; Temperature distribution ; Temperature gradients ; Temperature measurement ; Training ; Transformers ; Transient analysis ; Transient hot spot temperature</subject><ispartof>IEEE access, 2021-01, Vol.9, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-f572db17cf2c991ac5d90a52098176b1123138ffbc6ad181b1b81d1092d2dfbd3</citedby><cites>FETCH-LOGICAL-c408t-f572db17cf2c991ac5d90a52098176b1123138ffbc6ad181b1b81d1092d2dfbd3</cites><orcidid>0000-0001-8477-1205 ; 0000-0002-1557-7211</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9313995$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Ruan, Jiangjun</creatorcontrib><creatorcontrib>Deng, Yongqing</creatorcontrib><creatorcontrib>Quan, Yu</creatorcontrib><creatorcontrib>Gong, Ruohan</creatorcontrib><title>Inversion detection of transformer transient hot spot temperature</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper proposes an inversion method to estimate a 10 kV oil-immersed transformer transient hot spot temperature (HST). A set of transient feature quantities which can reflect the load change are proposed, those quantities as well as the real time load rate and feature temperature points on the transformer iron shell are taken as the input parameters of a machine learning model established by support vector regression (SVR), thus to describe their relationships with the transformer transient HST. K-fold cross-validation training method and grid search (GS) parameters optimization method are used to find the optimal parameters of the SVR model, the HST inversion results agree well with the transformer temperature rise test data which are conducted with short circuit method, and the HST inversion results outperform the results obtained with GA-BPNN method. The mean absolute percentage error (MAPE) is 1.66 %, and the maximum temperature difference is 2.93 °C.</description><subject>Load modeling</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Oil insulation</subject><subject>oil-immersed transformer</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Power transformer insulation</subject><subject>Short circuits</subject><subject>Support vector machines</subject><subject>support vector regression</subject><subject>Temperature distribution</subject><subject>Temperature gradients</subject><subject>Temperature measurement</subject><subject>Training</subject><subject>Transformers</subject><subject>Transient analysis</subject><subject>Transient hot spot temperature</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1LAzEQDaJgqf0FvSx4bs0km93kWJaqhYKH6jlk86Fb2s2apIL_3tQt4hwyj-G9N5mH0BzwEgCLh1XTrHe7JcEElhSXglB2hSYEKrGgjFbX__AtmsW4x7l4HrF6glab_suG2Pm-MDZZnc7IuyIF1Ufnw9GGEXe2T8WHT0Uc8pPscbBBpVOwd-jGqUO0s0uforfH9WvzvNi-PG2a1XahS8zTwrGamBZq7YgWApRmRmDFCBYc6qoFIBQod67VlTLAoYWWg8n3EUOMaw2dos3oa7zayyF0RxW-pVed_B348C5VSJ0-WFkRKDUjuuaCltzSFkTNc1bKUEy5wNnrfvQagv882Zjk3p9Cn78vSZmpJaaEZRYdWTr4GIN1f1sBy3P0coxenqOXl-izaj6qOmvtn0Lk64Rg9AdKPn5X</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Ruan, Jiangjun</creator><creator>Deng, Yongqing</creator><creator>Quan, Yu</creator><creator>Gong, Ruohan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8477-1205</orcidid><orcidid>https://orcid.org/0000-0002-1557-7211</orcidid></search><sort><creationdate>20210101</creationdate><title>Inversion detection of transformer transient hot spot temperature</title><author>Ruan, Jiangjun ; Deng, Yongqing ; Quan, Yu ; Gong, Ruohan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-f572db17cf2c991ac5d90a52098176b1123138ffbc6ad181b1b81d1092d2dfbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Load modeling</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Oil insulation</topic><topic>oil-immersed transformer</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Power transformer insulation</topic><topic>Short circuits</topic><topic>Support vector machines</topic><topic>support vector regression</topic><topic>Temperature distribution</topic><topic>Temperature gradients</topic><topic>Temperature measurement</topic><topic>Training</topic><topic>Transformers</topic><topic>Transient analysis</topic><topic>Transient hot spot temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruan, Jiangjun</creatorcontrib><creatorcontrib>Deng, Yongqing</creatorcontrib><creatorcontrib>Quan, Yu</creatorcontrib><creatorcontrib>Gong, Ruohan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruan, Jiangjun</au><au>Deng, Yongqing</au><au>Quan, Yu</au><au>Gong, Ruohan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inversion detection of transformer transient hot spot temperature</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>9</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper proposes an inversion method to estimate a 10 kV oil-immersed transformer transient hot spot temperature (HST). A set of transient feature quantities which can reflect the load change are proposed, those quantities as well as the real time load rate and feature temperature points on the transformer iron shell are taken as the input parameters of a machine learning model established by support vector regression (SVR), thus to describe their relationships with the transformer transient HST. K-fold cross-validation training method and grid search (GS) parameters optimization method are used to find the optimal parameters of the SVR model, the HST inversion results agree well with the transformer temperature rise test data which are conducted with short circuit method, and the HST inversion results outperform the results obtained with GA-BPNN method. The mean absolute percentage error (MAPE) is 1.66 %, and the maximum temperature difference is 2.93 °C.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3049235</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8477-1205</orcidid><orcidid>https://orcid.org/0000-0002-1557-7211</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021-01, Vol.9, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2478140325 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Load modeling Machine learning Mathematical models Oil insulation oil-immersed transformer Optimization Parameters Power transformer insulation Short circuits Support vector machines support vector regression Temperature distribution Temperature gradients Temperature measurement Training Transformers Transient analysis Transient hot spot temperature |
title | Inversion detection of transformer transient hot spot temperature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T23%3A59%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inversion%20detection%20of%20transformer%20transient%20hot%20spot%20temperature&rft.jtitle=IEEE%20access&rft.au=Ruan,%20Jiangjun&rft.date=2021-01-01&rft.volume=9&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3049235&rft_dat=%3Cproquest_ieee_%3E2478140325%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478140325&rft_id=info:pmid/&rft_ieee_id=9313995&rft_doaj_id=oai_doaj_org_article_6214c52c789348e3b1978110ad303890&rfr_iscdi=true |