Inversion detection of transformer transient hot spot temperature

This paper proposes an inversion method to estimate a 10 kV oil-immersed transformer transient hot spot temperature (HST). A set of transient feature quantities which can reflect the load change are proposed, those quantities as well as the real time load rate and feature temperature points on the t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021-01, Vol.9, p.1-1
Hauptverfasser: Ruan, Jiangjun, Deng, Yongqing, Quan, Yu, Gong, Ruohan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 9
creator Ruan, Jiangjun
Deng, Yongqing
Quan, Yu
Gong, Ruohan
description This paper proposes an inversion method to estimate a 10 kV oil-immersed transformer transient hot spot temperature (HST). A set of transient feature quantities which can reflect the load change are proposed, those quantities as well as the real time load rate and feature temperature points on the transformer iron shell are taken as the input parameters of a machine learning model established by support vector regression (SVR), thus to describe their relationships with the transformer transient HST. K-fold cross-validation training method and grid search (GS) parameters optimization method are used to find the optimal parameters of the SVR model, the HST inversion results agree well with the transformer temperature rise test data which are conducted with short circuit method, and the HST inversion results outperform the results obtained with GA-BPNN method. The mean absolute percentage error (MAPE) is 1.66 %, and the maximum temperature difference is 2.93 °C.
doi_str_mv 10.1109/ACCESS.2021.3049235
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2478140325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9313995</ieee_id><doaj_id>oai_doaj_org_article_6214c52c789348e3b1978110ad303890</doaj_id><sourcerecordid>2478140325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-f572db17cf2c991ac5d90a52098176b1123138ffbc6ad181b1b81d1092d2dfbd3</originalsourceid><addsrcrecordid>eNpNUE1LAzEQDaJgqf0FvSx4bs0km93kWJaqhYKH6jlk86Fb2s2apIL_3tQt4hwyj-G9N5mH0BzwEgCLh1XTrHe7JcEElhSXglB2hSYEKrGgjFbX__AtmsW4x7l4HrF6glab_suG2Pm-MDZZnc7IuyIF1Ufnw9GGEXe2T8WHT0Uc8pPscbBBpVOwd-jGqUO0s0uforfH9WvzvNi-PG2a1XahS8zTwrGamBZq7YgWApRmRmDFCBYc6qoFIBQod67VlTLAoYWWg8n3EUOMaw2dos3oa7zayyF0RxW-pVed_B348C5VSJ0-WFkRKDUjuuaCltzSFkTNc1bKUEy5wNnrfvQagv882Zjk3p9Cn78vSZmpJaaEZRYdWTr4GIN1f1sBy3P0coxenqOXl-izaj6qOmvtn0Lk64Rg9AdKPn5X</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478140325</pqid></control><display><type>article</type><title>Inversion detection of transformer transient hot spot temperature</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ruan, Jiangjun ; Deng, Yongqing ; Quan, Yu ; Gong, Ruohan</creator><creatorcontrib>Ruan, Jiangjun ; Deng, Yongqing ; Quan, Yu ; Gong, Ruohan</creatorcontrib><description>This paper proposes an inversion method to estimate a 10 kV oil-immersed transformer transient hot spot temperature (HST). A set of transient feature quantities which can reflect the load change are proposed, those quantities as well as the real time load rate and feature temperature points on the transformer iron shell are taken as the input parameters of a machine learning model established by support vector regression (SVR), thus to describe their relationships with the transformer transient HST. K-fold cross-validation training method and grid search (GS) parameters optimization method are used to find the optimal parameters of the SVR model, the HST inversion results agree well with the transformer temperature rise test data which are conducted with short circuit method, and the HST inversion results outperform the results obtained with GA-BPNN method. The mean absolute percentage error (MAPE) is 1.66 %, and the maximum temperature difference is 2.93 °C.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3049235</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Load modeling ; Machine learning ; Mathematical models ; Oil insulation ; oil-immersed transformer ; Optimization ; Parameters ; Power transformer insulation ; Short circuits ; Support vector machines ; support vector regression ; Temperature distribution ; Temperature gradients ; Temperature measurement ; Training ; Transformers ; Transient analysis ; Transient hot spot temperature</subject><ispartof>IEEE access, 2021-01, Vol.9, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-f572db17cf2c991ac5d90a52098176b1123138ffbc6ad181b1b81d1092d2dfbd3</citedby><cites>FETCH-LOGICAL-c408t-f572db17cf2c991ac5d90a52098176b1123138ffbc6ad181b1b81d1092d2dfbd3</cites><orcidid>0000-0001-8477-1205 ; 0000-0002-1557-7211</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9313995$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Ruan, Jiangjun</creatorcontrib><creatorcontrib>Deng, Yongqing</creatorcontrib><creatorcontrib>Quan, Yu</creatorcontrib><creatorcontrib>Gong, Ruohan</creatorcontrib><title>Inversion detection of transformer transient hot spot temperature</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper proposes an inversion method to estimate a 10 kV oil-immersed transformer transient hot spot temperature (HST). A set of transient feature quantities which can reflect the load change are proposed, those quantities as well as the real time load rate and feature temperature points on the transformer iron shell are taken as the input parameters of a machine learning model established by support vector regression (SVR), thus to describe their relationships with the transformer transient HST. K-fold cross-validation training method and grid search (GS) parameters optimization method are used to find the optimal parameters of the SVR model, the HST inversion results agree well with the transformer temperature rise test data which are conducted with short circuit method, and the HST inversion results outperform the results obtained with GA-BPNN method. The mean absolute percentage error (MAPE) is 1.66 %, and the maximum temperature difference is 2.93 °C.</description><subject>Load modeling</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Oil insulation</subject><subject>oil-immersed transformer</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Power transformer insulation</subject><subject>Short circuits</subject><subject>Support vector machines</subject><subject>support vector regression</subject><subject>Temperature distribution</subject><subject>Temperature gradients</subject><subject>Temperature measurement</subject><subject>Training</subject><subject>Transformers</subject><subject>Transient analysis</subject><subject>Transient hot spot temperature</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1LAzEQDaJgqf0FvSx4bs0km93kWJaqhYKH6jlk86Fb2s2apIL_3tQt4hwyj-G9N5mH0BzwEgCLh1XTrHe7JcEElhSXglB2hSYEKrGgjFbX__AtmsW4x7l4HrF6glab_suG2Pm-MDZZnc7IuyIF1Ufnw9GGEXe2T8WHT0Uc8pPscbBBpVOwd-jGqUO0s0uforfH9WvzvNi-PG2a1XahS8zTwrGamBZq7YgWApRmRmDFCBYc6qoFIBQod67VlTLAoYWWg8n3EUOMaw2dos3oa7zayyF0RxW-pVed_B348C5VSJ0-WFkRKDUjuuaCltzSFkTNc1bKUEy5wNnrfvQagv882Zjk3p9Cn78vSZmpJaaEZRYdWTr4GIN1f1sBy3P0coxenqOXl-izaj6qOmvtn0Lk64Rg9AdKPn5X</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Ruan, Jiangjun</creator><creator>Deng, Yongqing</creator><creator>Quan, Yu</creator><creator>Gong, Ruohan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8477-1205</orcidid><orcidid>https://orcid.org/0000-0002-1557-7211</orcidid></search><sort><creationdate>20210101</creationdate><title>Inversion detection of transformer transient hot spot temperature</title><author>Ruan, Jiangjun ; Deng, Yongqing ; Quan, Yu ; Gong, Ruohan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-f572db17cf2c991ac5d90a52098176b1123138ffbc6ad181b1b81d1092d2dfbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Load modeling</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Oil insulation</topic><topic>oil-immersed transformer</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Power transformer insulation</topic><topic>Short circuits</topic><topic>Support vector machines</topic><topic>support vector regression</topic><topic>Temperature distribution</topic><topic>Temperature gradients</topic><topic>Temperature measurement</topic><topic>Training</topic><topic>Transformers</topic><topic>Transient analysis</topic><topic>Transient hot spot temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruan, Jiangjun</creatorcontrib><creatorcontrib>Deng, Yongqing</creatorcontrib><creatorcontrib>Quan, Yu</creatorcontrib><creatorcontrib>Gong, Ruohan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruan, Jiangjun</au><au>Deng, Yongqing</au><au>Quan, Yu</au><au>Gong, Ruohan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inversion detection of transformer transient hot spot temperature</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>9</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper proposes an inversion method to estimate a 10 kV oil-immersed transformer transient hot spot temperature (HST). A set of transient feature quantities which can reflect the load change are proposed, those quantities as well as the real time load rate and feature temperature points on the transformer iron shell are taken as the input parameters of a machine learning model established by support vector regression (SVR), thus to describe their relationships with the transformer transient HST. K-fold cross-validation training method and grid search (GS) parameters optimization method are used to find the optimal parameters of the SVR model, the HST inversion results agree well with the transformer temperature rise test data which are conducted with short circuit method, and the HST inversion results outperform the results obtained with GA-BPNN method. The mean absolute percentage error (MAPE) is 1.66 %, and the maximum temperature difference is 2.93 °C.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3049235</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8477-1205</orcidid><orcidid>https://orcid.org/0000-0002-1557-7211</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021-01, Vol.9, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2478140325
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Load modeling
Machine learning
Mathematical models
Oil insulation
oil-immersed transformer
Optimization
Parameters
Power transformer insulation
Short circuits
Support vector machines
support vector regression
Temperature distribution
Temperature gradients
Temperature measurement
Training
Transformers
Transient analysis
Transient hot spot temperature
title Inversion detection of transformer transient hot spot temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T23%3A59%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inversion%20detection%20of%20transformer%20transient%20hot%20spot%20temperature&rft.jtitle=IEEE%20access&rft.au=Ruan,%20Jiangjun&rft.date=2021-01-01&rft.volume=9&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3049235&rft_dat=%3Cproquest_ieee_%3E2478140325%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478140325&rft_id=info:pmid/&rft_ieee_id=9313995&rft_doaj_id=oai_doaj_org_article_6214c52c789348e3b1978110ad303890&rfr_iscdi=true