Effect of hydropriming on Trigonella foenum callus growth, biochemical traits and phytochemical components under PEG treatment

The induction of secondary metabolites under osmotic stress is well documented. However, cell death is probably due to osmotic stress. This work tries to study the synergetic effect of hydropriming and polyethylene glycol (PEG) on enhancing the secondary metabolites production in fenugreek callus cu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant cell, tissue and organ culture tissue and organ culture, 2020-04, Vol.141 (1), p.179-190
Hauptverfasser: Alzandi, Abdulrahman Ali, Naguib, Deyala M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The induction of secondary metabolites under osmotic stress is well documented. However, cell death is probably due to osmotic stress. This work tries to study the synergetic effect of hydropriming and polyethylene glycol (PEG) on enhancing the secondary metabolites production in fenugreek callus cultures without facing cell death. PEG initiates the stress and the hydropriming increase the plant cell response against the stress. Fenugreek calli were initiated from hypocotyl of two groups of seeds, the first was hydroprimed overnight before germination, the second remained dry. Three months old calli of the two groups were subcultured on media containing two different concentration of PEG (5, 10%). The calli growth, biochemical analysis, secondary metabolism keys, and secondary metabolites were determined after 4 weeks. PE induced oxidative stress, which increased the membrane lipid peroxidation and decreased cell viability and growth. Hydropriming enhanced the activity of antioxidant enzymes, regulating the reactive oxygen species level, accumulating the osmolytes and secondary products. Therefore the primed callus can tolerate the osmotic stress initiated with PEG. Consequently, cell biomass increased and not affected by PEG treatment. On the other hand, the calli from non-primed seeds have a significant decrease in fresh weight, and dry weight under the higher PEG treatment. The hydropriming protected the growth of the cells under PEG treatment with a high content of secondary metabolites and high antioxidant machinery. The synergetic effect of hydropriming and PEG can be used as a simple and low-cost way to produce valuable compounds in commercial industrial bioreactors. Key message The synergetic effect of hydropriming and PEG enhances the secondary metabolites production in fenugreek callus. PEG initiates the stress and the hydropriming improves the plant cell response against the stress.
ISSN:0167-6857
1573-5044
DOI:10.1007/s11240-020-01778-6