MXene aerogel-based phase change materials toward solar energy conversion

Two-dimensional transition-metal carbides/carbonitrides (MXenes) have demonstrated wide application prospect in energy conversion and storage, mostly in the form of electrochemical energy storage. Compared with the conversion between chemical energy and electrical energy, an energy conversion proces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy materials and solar cells 2020-03, Vol.206, p.110229, Article 110229
Hauptverfasser: Lin, Pengcheng, Xie, Jiajin, He, Yingdong, Lu, Xiang, Li, Weijie, Fang, Jun, Yan, Shouhuan, Zhang, Li, Sheng, Xinxin, Chen, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two-dimensional transition-metal carbides/carbonitrides (MXenes) have demonstrated wide application prospect in energy conversion and storage, mostly in the form of electrochemical energy storage. Compared with the conversion between chemical energy and electrical energy, an energy conversion process initiated by solar energy and driven by the physical change of energy materials will be a sustainable and environmentally friendly strategy. Therefore, a high-performance MXene aerogel-based phase change material for solar energy conversion and thermal energy storage is constructed. MXene nanosheets with an extinction coefficient of 25.67 L/(g.cm) at 808 nm demonstrate excellent light absorption performance, which can spontaneously convert the solar energy into thermal energy. The polyethylene glycol (PEG) possessing high affinity with MXene acts the medium for thermal energy storage and release in the process of fusion and solidification. The MXene@PEG aerogels are lightweight, with a density about 30 mg/cm3. The MXene skeleton is introduced as supporting materials to keep the shape of MXene@PEG aerogel stable during the phase change process. The MXene nanosheets improve the thermal stability of PEG, the thermal decomposition temperatures can be increased by 40 °C. The actual fusion and solidification enthalpies of MXene@PEG aerogels can reach 167.72 and 141.51 J/g, respectively. The photothermal storage efficiency of MXene@PEG aerogels reaches a relatively high value of 92.5%. This work provides a new type of scaffold for lightweight and shape-stable photothermal carrier and paves the way for the application of non-graphene 2D materials toward solar energy utilization. [Display omitted] •A brand new concept of MXene aerogel-based phase change materials for solar energy conversion has been established.•The MXene aerogel-based phase change materials are lightweight and shape-stable.•The photothermal storage efficiency of Mxene@PEG aerogels reaches 92.5%.
ISSN:0927-0248
1879-3398
DOI:10.1016/j.solmat.2019.110229