MXene aerogel-based phase change materials toward solar energy conversion

Two-dimensional transition-metal carbides/carbonitrides (MXenes) have demonstrated wide application prospect in energy conversion and storage, mostly in the form of electrochemical energy storage. Compared with the conversion between chemical energy and electrical energy, an energy conversion proces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy materials and solar cells 2020-03, Vol.206, p.110229, Article 110229
Hauptverfasser: Lin, Pengcheng, Xie, Jiajin, He, Yingdong, Lu, Xiang, Li, Weijie, Fang, Jun, Yan, Shouhuan, Zhang, Li, Sheng, Xinxin, Chen, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 110229
container_title Solar energy materials and solar cells
container_volume 206
creator Lin, Pengcheng
Xie, Jiajin
He, Yingdong
Lu, Xiang
Li, Weijie
Fang, Jun
Yan, Shouhuan
Zhang, Li
Sheng, Xinxin
Chen, Ying
description Two-dimensional transition-metal carbides/carbonitrides (MXenes) have demonstrated wide application prospect in energy conversion and storage, mostly in the form of electrochemical energy storage. Compared with the conversion between chemical energy and electrical energy, an energy conversion process initiated by solar energy and driven by the physical change of energy materials will be a sustainable and environmentally friendly strategy. Therefore, a high-performance MXene aerogel-based phase change material for solar energy conversion and thermal energy storage is constructed. MXene nanosheets with an extinction coefficient of 25.67 L/(g.cm) at 808 nm demonstrate excellent light absorption performance, which can spontaneously convert the solar energy into thermal energy. The polyethylene glycol (PEG) possessing high affinity with MXene acts the medium for thermal energy storage and release in the process of fusion and solidification. The MXene@PEG aerogels are lightweight, with a density about 30 mg/cm3. The MXene skeleton is introduced as supporting materials to keep the shape of MXene@PEG aerogel stable during the phase change process. The MXene nanosheets improve the thermal stability of PEG, the thermal decomposition temperatures can be increased by 40 °C. The actual fusion and solidification enthalpies of MXene@PEG aerogels can reach 167.72 and 141.51 J/g, respectively. The photothermal storage efficiency of MXene@PEG aerogels reaches a relatively high value of 92.5%. This work provides a new type of scaffold for lightweight and shape-stable photothermal carrier and paves the way for the application of non-graphene 2D materials toward solar energy utilization. [Display omitted] •A brand new concept of MXene aerogel-based phase change materials for solar energy conversion has been established.•The MXene aerogel-based phase change materials are lightweight and shape-stable.•The photothermal storage efficiency of Mxene@PEG aerogels reaches 92.5%.
doi_str_mv 10.1016/j.solmat.2019.110229
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2379000242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024819305586</els_id><sourcerecordid>2379000242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-8f0027613f05a296298677e30c249bc24f20945f968dd1ec513dde8d52a930d63</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKtv4CLgesbcJjPZCFK8FCpuFNyFNDnTZmgnNZlW-vamjGs359_8F86H0C0lJSVU3ndlCputGUpGqCopJYypMzShTa0KzlVzjiZEsbogTDSX6CqljhDCJBcTNH_7gh6wgRhWsCmWJoHDu3UWbNemXwHOvRC92SQ8hB8THc5bJuKciqsjtqE_QEw-9Nfoos0uuPnTKfp8fvqYvRaL95f57HFRWM7FUDRtnq4l5S2pDFOSqUbWNXBimVDLfFpGlKhaJRvnKNiKcuegcRUzihMn-RTdjb27GL73kAbdhX3s86RmvFanzwTLLjG6bAwpRWj1LvqtiUdNiT5B050eoekTND1Cy7GHMQb5g4OHqJP10FtwPoIdtAv-_4Jf31d2TQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2379000242</pqid></control><display><type>article</type><title>MXene aerogel-based phase change materials toward solar energy conversion</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Lin, Pengcheng ; Xie, Jiajin ; He, Yingdong ; Lu, Xiang ; Li, Weijie ; Fang, Jun ; Yan, Shouhuan ; Zhang, Li ; Sheng, Xinxin ; Chen, Ying</creator><creatorcontrib>Lin, Pengcheng ; Xie, Jiajin ; He, Yingdong ; Lu, Xiang ; Li, Weijie ; Fang, Jun ; Yan, Shouhuan ; Zhang, Li ; Sheng, Xinxin ; Chen, Ying</creatorcontrib><description>Two-dimensional transition-metal carbides/carbonitrides (MXenes) have demonstrated wide application prospect in energy conversion and storage, mostly in the form of electrochemical energy storage. Compared with the conversion between chemical energy and electrical energy, an energy conversion process initiated by solar energy and driven by the physical change of energy materials will be a sustainable and environmentally friendly strategy. Therefore, a high-performance MXene aerogel-based phase change material for solar energy conversion and thermal energy storage is constructed. MXene nanosheets with an extinction coefficient of 25.67 L/(g.cm) at 808 nm demonstrate excellent light absorption performance, which can spontaneously convert the solar energy into thermal energy. The polyethylene glycol (PEG) possessing high affinity with MXene acts the medium for thermal energy storage and release in the process of fusion and solidification. The MXene@PEG aerogels are lightweight, with a density about 30 mg/cm3. The MXene skeleton is introduced as supporting materials to keep the shape of MXene@PEG aerogel stable during the phase change process. The MXene nanosheets improve the thermal stability of PEG, the thermal decomposition temperatures can be increased by 40 °C. The actual fusion and solidification enthalpies of MXene@PEG aerogels can reach 167.72 and 141.51 J/g, respectively. The photothermal storage efficiency of MXene@PEG aerogels reaches a relatively high value of 92.5%. This work provides a new type of scaffold for lightweight and shape-stable photothermal carrier and paves the way for the application of non-graphene 2D materials toward solar energy utilization. [Display omitted] •A brand new concept of MXene aerogel-based phase change materials for solar energy conversion has been established.•The MXene aerogel-based phase change materials are lightweight and shape-stable.•The photothermal storage efficiency of Mxene@PEG aerogels reaches 92.5%.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2019.110229</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Aerogel ; Aerogels ; Carbon nitride ; Chemical energy ; Electrochemistry ; Electromagnetic absorption ; Energy conversion ; Energy storage ; Energy utilization ; Enthalpy ; Graphene ; Lightweight ; Metal carbides ; MXene nanosheet ; MXenes ; Nanostructure ; Phase change material ; Phase change materials ; Photothermal conversion ; Polyethylene glycol ; Solar energy ; Solar energy conversion ; Solidification ; Thermal decomposition ; Thermal energy ; Thermal stability ; Transition metals ; Two dimensional materials</subject><ispartof>Solar energy materials and solar cells, 2020-03, Vol.206, p.110229, Article 110229</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Mar 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-8f0027613f05a296298677e30c249bc24f20945f968dd1ec513dde8d52a930d63</citedby><cites>FETCH-LOGICAL-c334t-8f0027613f05a296298677e30c249bc24f20945f968dd1ec513dde8d52a930d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solmat.2019.110229$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Lin, Pengcheng</creatorcontrib><creatorcontrib>Xie, Jiajin</creatorcontrib><creatorcontrib>He, Yingdong</creatorcontrib><creatorcontrib>Lu, Xiang</creatorcontrib><creatorcontrib>Li, Weijie</creatorcontrib><creatorcontrib>Fang, Jun</creatorcontrib><creatorcontrib>Yan, Shouhuan</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Sheng, Xinxin</creatorcontrib><creatorcontrib>Chen, Ying</creatorcontrib><title>MXene aerogel-based phase change materials toward solar energy conversion</title><title>Solar energy materials and solar cells</title><description>Two-dimensional transition-metal carbides/carbonitrides (MXenes) have demonstrated wide application prospect in energy conversion and storage, mostly in the form of electrochemical energy storage. Compared with the conversion between chemical energy and electrical energy, an energy conversion process initiated by solar energy and driven by the physical change of energy materials will be a sustainable and environmentally friendly strategy. Therefore, a high-performance MXene aerogel-based phase change material for solar energy conversion and thermal energy storage is constructed. MXene nanosheets with an extinction coefficient of 25.67 L/(g.cm) at 808 nm demonstrate excellent light absorption performance, which can spontaneously convert the solar energy into thermal energy. The polyethylene glycol (PEG) possessing high affinity with MXene acts the medium for thermal energy storage and release in the process of fusion and solidification. The MXene@PEG aerogels are lightweight, with a density about 30 mg/cm3. The MXene skeleton is introduced as supporting materials to keep the shape of MXene@PEG aerogel stable during the phase change process. The MXene nanosheets improve the thermal stability of PEG, the thermal decomposition temperatures can be increased by 40 °C. The actual fusion and solidification enthalpies of MXene@PEG aerogels can reach 167.72 and 141.51 J/g, respectively. The photothermal storage efficiency of MXene@PEG aerogels reaches a relatively high value of 92.5%. This work provides a new type of scaffold for lightweight and shape-stable photothermal carrier and paves the way for the application of non-graphene 2D materials toward solar energy utilization. [Display omitted] •A brand new concept of MXene aerogel-based phase change materials for solar energy conversion has been established.•The MXene aerogel-based phase change materials are lightweight and shape-stable.•The photothermal storage efficiency of Mxene@PEG aerogels reaches 92.5%.</description><subject>Aerogel</subject><subject>Aerogels</subject><subject>Carbon nitride</subject><subject>Chemical energy</subject><subject>Electrochemistry</subject><subject>Electromagnetic absorption</subject><subject>Energy conversion</subject><subject>Energy storage</subject><subject>Energy utilization</subject><subject>Enthalpy</subject><subject>Graphene</subject><subject>Lightweight</subject><subject>Metal carbides</subject><subject>MXene nanosheet</subject><subject>MXenes</subject><subject>Nanostructure</subject><subject>Phase change material</subject><subject>Phase change materials</subject><subject>Photothermal conversion</subject><subject>Polyethylene glycol</subject><subject>Solar energy</subject><subject>Solar energy conversion</subject><subject>Solidification</subject><subject>Thermal decomposition</subject><subject>Thermal energy</subject><subject>Thermal stability</subject><subject>Transition metals</subject><subject>Two dimensional materials</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKtv4CLgesbcJjPZCFK8FCpuFNyFNDnTZmgnNZlW-vamjGs359_8F86H0C0lJSVU3ndlCputGUpGqCopJYypMzShTa0KzlVzjiZEsbogTDSX6CqljhDCJBcTNH_7gh6wgRhWsCmWJoHDu3UWbNemXwHOvRC92SQ8hB8THc5bJuKciqsjtqE_QEw-9Nfoos0uuPnTKfp8fvqYvRaL95f57HFRWM7FUDRtnq4l5S2pDFOSqUbWNXBimVDLfFpGlKhaJRvnKNiKcuegcRUzihMn-RTdjb27GL73kAbdhX3s86RmvFanzwTLLjG6bAwpRWj1LvqtiUdNiT5B050eoekTND1Cy7GHMQb5g4OHqJP10FtwPoIdtAv-_4Jf31d2TQ</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Lin, Pengcheng</creator><creator>Xie, Jiajin</creator><creator>He, Yingdong</creator><creator>Lu, Xiang</creator><creator>Li, Weijie</creator><creator>Fang, Jun</creator><creator>Yan, Shouhuan</creator><creator>Zhang, Li</creator><creator>Sheng, Xinxin</creator><creator>Chen, Ying</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>202003</creationdate><title>MXene aerogel-based phase change materials toward solar energy conversion</title><author>Lin, Pengcheng ; Xie, Jiajin ; He, Yingdong ; Lu, Xiang ; Li, Weijie ; Fang, Jun ; Yan, Shouhuan ; Zhang, Li ; Sheng, Xinxin ; Chen, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-8f0027613f05a296298677e30c249bc24f20945f968dd1ec513dde8d52a930d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerogel</topic><topic>Aerogels</topic><topic>Carbon nitride</topic><topic>Chemical energy</topic><topic>Electrochemistry</topic><topic>Electromagnetic absorption</topic><topic>Energy conversion</topic><topic>Energy storage</topic><topic>Energy utilization</topic><topic>Enthalpy</topic><topic>Graphene</topic><topic>Lightweight</topic><topic>Metal carbides</topic><topic>MXene nanosheet</topic><topic>MXenes</topic><topic>Nanostructure</topic><topic>Phase change material</topic><topic>Phase change materials</topic><topic>Photothermal conversion</topic><topic>Polyethylene glycol</topic><topic>Solar energy</topic><topic>Solar energy conversion</topic><topic>Solidification</topic><topic>Thermal decomposition</topic><topic>Thermal energy</topic><topic>Thermal stability</topic><topic>Transition metals</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Pengcheng</creatorcontrib><creatorcontrib>Xie, Jiajin</creatorcontrib><creatorcontrib>He, Yingdong</creatorcontrib><creatorcontrib>Lu, Xiang</creatorcontrib><creatorcontrib>Li, Weijie</creatorcontrib><creatorcontrib>Fang, Jun</creatorcontrib><creatorcontrib>Yan, Shouhuan</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Sheng, Xinxin</creatorcontrib><creatorcontrib>Chen, Ying</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Pengcheng</au><au>Xie, Jiajin</au><au>He, Yingdong</au><au>Lu, Xiang</au><au>Li, Weijie</au><au>Fang, Jun</au><au>Yan, Shouhuan</au><au>Zhang, Li</au><au>Sheng, Xinxin</au><au>Chen, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MXene aerogel-based phase change materials toward solar energy conversion</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2020-03</date><risdate>2020</risdate><volume>206</volume><spage>110229</spage><pages>110229-</pages><artnum>110229</artnum><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>Two-dimensional transition-metal carbides/carbonitrides (MXenes) have demonstrated wide application prospect in energy conversion and storage, mostly in the form of electrochemical energy storage. Compared with the conversion between chemical energy and electrical energy, an energy conversion process initiated by solar energy and driven by the physical change of energy materials will be a sustainable and environmentally friendly strategy. Therefore, a high-performance MXene aerogel-based phase change material for solar energy conversion and thermal energy storage is constructed. MXene nanosheets with an extinction coefficient of 25.67 L/(g.cm) at 808 nm demonstrate excellent light absorption performance, which can spontaneously convert the solar energy into thermal energy. The polyethylene glycol (PEG) possessing high affinity with MXene acts the medium for thermal energy storage and release in the process of fusion and solidification. The MXene@PEG aerogels are lightweight, with a density about 30 mg/cm3. The MXene skeleton is introduced as supporting materials to keep the shape of MXene@PEG aerogel stable during the phase change process. The MXene nanosheets improve the thermal stability of PEG, the thermal decomposition temperatures can be increased by 40 °C. The actual fusion and solidification enthalpies of MXene@PEG aerogels can reach 167.72 and 141.51 J/g, respectively. The photothermal storage efficiency of MXene@PEG aerogels reaches a relatively high value of 92.5%. This work provides a new type of scaffold for lightweight and shape-stable photothermal carrier and paves the way for the application of non-graphene 2D materials toward solar energy utilization. [Display omitted] •A brand new concept of MXene aerogel-based phase change materials for solar energy conversion has been established.•The MXene aerogel-based phase change materials are lightweight and shape-stable.•The photothermal storage efficiency of Mxene@PEG aerogels reaches 92.5%.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2019.110229</doi></addata></record>
fulltext fulltext
identifier ISSN: 0927-0248
ispartof Solar energy materials and solar cells, 2020-03, Vol.206, p.110229, Article 110229
issn 0927-0248
1879-3398
language eng
recordid cdi_proquest_journals_2379000242
source Elsevier ScienceDirect Journals Complete
subjects Aerogel
Aerogels
Carbon nitride
Chemical energy
Electrochemistry
Electromagnetic absorption
Energy conversion
Energy storage
Energy utilization
Enthalpy
Graphene
Lightweight
Metal carbides
MXene nanosheet
MXenes
Nanostructure
Phase change material
Phase change materials
Photothermal conversion
Polyethylene glycol
Solar energy
Solar energy conversion
Solidification
Thermal decomposition
Thermal energy
Thermal stability
Transition metals
Two dimensional materials
title MXene aerogel-based phase change materials toward solar energy conversion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A32%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MXene%20aerogel-based%20phase%20change%20materials%20toward%20solar%20energy%20conversion&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Lin,%20Pengcheng&rft.date=2020-03&rft.volume=206&rft.spage=110229&rft.pages=110229-&rft.artnum=110229&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2019.110229&rft_dat=%3Cproquest_cross%3E2379000242%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2379000242&rft_id=info:pmid/&rft_els_id=S0927024819305586&rfr_iscdi=true