New estimates for the length of the Erdos-Herzog-Piranian lemniscate

Let p(z) be a monic polynomial of degree n. Consider the lemniscate L={z:|p(z)|=1}. It has been conjectured that L has the largest length when p(z)=z^n-1. We show that the length of L attains a local maximum at this polynomial and prove the asymptotically sharp bound |L|

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2008-08
Hauptverfasser: Fryntov, Alexander, Nazarov, Fedor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Fryntov, Alexander
Nazarov, Fedor
description Let p(z) be a monic polynomial of degree n. Consider the lemniscate L={z:|p(z)|=1}. It has been conjectured that L has the largest length when p(z)=z^n-1. We show that the length of L attains a local maximum at this polynomial and prove the asymptotically sharp bound |L|
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2090638077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2090638077</sourcerecordid><originalsourceid>FETCH-proquest_journals_20906380773</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRw8UstV0gtLsnMTSxJLVZIyy9SKMlIVchJzUsvyVDITwPzXItS8ot1PVKLqvLTdQMyixLzMhPzgGpy8zKLk4H6eBhY0xJzilN5oTQ3g7Kba4izh25BUX5hKdD0-Kz80qI8oFS8kYGlgZmxhYG5uTFxqgAXHzpT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090638077</pqid></control><display><type>article</type><title>New estimates for the length of the Erdos-Herzog-Piranian lemniscate</title><source>Free E- Journals</source><creator>Fryntov, Alexander ; Nazarov, Fedor</creator><creatorcontrib>Fryntov, Alexander ; Nazarov, Fedor</creatorcontrib><description>Let p(z) be a monic polynomial of degree n. Consider the lemniscate L={z:|p(z)|=1}. It has been conjectured that L has the largest length when p(z)=z^n-1. We show that the length of L attains a local maximum at this polynomial and prove the asymptotically sharp bound |L|&lt;2n+o(n).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Polynomials</subject><ispartof>arXiv.org, 2008-08</ispartof><rights>2008. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Fryntov, Alexander</creatorcontrib><creatorcontrib>Nazarov, Fedor</creatorcontrib><title>New estimates for the length of the Erdos-Herzog-Piranian lemniscate</title><title>arXiv.org</title><description>Let p(z) be a monic polynomial of degree n. Consider the lemniscate L={z:|p(z)|=1}. It has been conjectured that L has the largest length when p(z)=z^n-1. We show that the length of L attains a local maximum at this polynomial and prove the asymptotically sharp bound |L|&lt;2n+o(n).</description><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRw8UstV0gtLsnMTSxJLVZIyy9SKMlIVchJzUsvyVDITwPzXItS8ot1PVKLqvLTdQMyixLzMhPzgGpy8zKLk4H6eBhY0xJzilN5oTQ3g7Kba4izh25BUX5hKdD0-Kz80qI8oFS8kYGlgZmxhYG5uTFxqgAXHzpT</recordid><startdate>20080805</startdate><enddate>20080805</enddate><creator>Fryntov, Alexander</creator><creator>Nazarov, Fedor</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20080805</creationdate><title>New estimates for the length of the Erdos-Herzog-Piranian lemniscate</title><author>Fryntov, Alexander ; Nazarov, Fedor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20906380773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Fryntov, Alexander</creatorcontrib><creatorcontrib>Nazarov, Fedor</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fryntov, Alexander</au><au>Nazarov, Fedor</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>New estimates for the length of the Erdos-Herzog-Piranian lemniscate</atitle><jtitle>arXiv.org</jtitle><date>2008-08-05</date><risdate>2008</risdate><eissn>2331-8422</eissn><abstract>Let p(z) be a monic polynomial of degree n. Consider the lemniscate L={z:|p(z)|=1}. It has been conjectured that L has the largest length when p(z)=z^n-1. We show that the length of L attains a local maximum at this polynomial and prove the asymptotically sharp bound |L|&lt;2n+o(n).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2008-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2090638077
source Free E- Journals
subjects Polynomials
title New estimates for the length of the Erdos-Herzog-Piranian lemniscate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A59%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=New%20estimates%20for%20the%20length%20of%20the%20Erdos-Herzog-Piranian%20lemniscate&rft.jtitle=arXiv.org&rft.au=Fryntov,%20Alexander&rft.date=2008-08-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2090638077%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2090638077&rft_id=info:pmid/&rfr_iscdi=true