New estimates for the length of the Erdos-Herzog-Piranian lemniscate

Let p(z) be a monic polynomial of degree n. Consider the lemniscate L={z:|p(z)|=1}. It has been conjectured that L has the largest length when p(z)=z^n-1. We show that the length of L attains a local maximum at this polynomial and prove the asymptotically sharp bound |L|

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2008-08
Hauptverfasser: Fryntov, Alexander, Nazarov, Fedor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let p(z) be a monic polynomial of degree n. Consider the lemniscate L={z:|p(z)|=1}. It has been conjectured that L has the largest length when p(z)=z^n-1. We show that the length of L attains a local maximum at this polynomial and prove the asymptotically sharp bound |L|
ISSN:2331-8422