New estimates for the length of the Erdos-Herzog-Piranian lemniscate
Let p(z) be a monic polynomial of degree n. Consider the lemniscate L={z:|p(z)|=1}. It has been conjectured that L has the largest length when p(z)=z^n-1. We show that the length of L attains a local maximum at this polynomial and prove the asymptotically sharp bound |L|
Gespeichert in:
Veröffentlicht in: | arXiv.org 2008-08 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let p(z) be a monic polynomial of degree n. Consider the lemniscate L={z:|p(z)|=1}. It has been conjectured that L has the largest length when p(z)=z^n-1. We show that the length of L attains a local maximum at this polynomial and prove the asymptotically sharp bound |L| |
---|---|
ISSN: | 2331-8422 |