Chemical passivation of InSb (100) substrates in aqueous solutions of sodium sulfide

The elemental composition and electronic structure of both native-oxide-covered InSb (100) substrates and substrates treated in aqueous solutions of sodium sulfide are analyzed by X-ray photoelectron spectroscopy. It is found that, as a result of treatment in a 1 M aqueous solution of Na 2 S and sub...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Semiconductors (Woodbury, N.Y.) N.Y.), 2013-05, Vol.47 (5), p.721-727
Hauptverfasser: Lvova, T. V., Dunaevskii, M. S., Lebedev, M. V., Shakhmin, A. L., Sedova, I. V., Ivanov, S. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The elemental composition and electronic structure of both native-oxide-covered InSb (100) substrates and substrates treated in aqueous solutions of sodium sulfide are analyzed by X-ray photoelectron spectroscopy. It is found that, as a result of treatment in a 1 M aqueous solution of Na 2 S and subsequent annealing in vacuum at 150°C, the surface layer consisting of complex antimony and indium oxides of nonstoichiometric composition is removed completely with the formation of a continuous layer of chemisorbed sulfur atoms coherently bound to indium atoms. According to atomic-force microscopy data, no etching of the host substrate material occurs during sulfide passivation. A shift (by 0.37 eV) of the In-Sb bulk photoemission towards higher binding energies is found, which indicates that the surface Fermi level shifts deeper into the conduction band.
ISSN:1063-7826
1090-6479
DOI:10.1134/S106378261305014X