Chemical passivation of InSb (100) substrates in aqueous solutions of sodium sulfide
The elemental composition and electronic structure of both native-oxide-covered InSb (100) substrates and substrates treated in aqueous solutions of sodium sulfide are analyzed by X-ray photoelectron spectroscopy. It is found that, as a result of treatment in a 1 M aqueous solution of Na 2 S and sub...
Gespeichert in:
Veröffentlicht in: | Semiconductors (Woodbury, N.Y.) N.Y.), 2013-05, Vol.47 (5), p.721-727 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The elemental composition and electronic structure of both native-oxide-covered InSb (100) substrates and substrates treated in aqueous solutions of sodium sulfide are analyzed by X-ray photoelectron spectroscopy. It is found that, as a result of treatment in a 1 M aqueous solution of Na
2
S and subsequent annealing in vacuum at 150°C, the surface layer consisting of complex antimony and indium oxides of nonstoichiometric composition is removed completely with the formation of a continuous layer of chemisorbed sulfur atoms coherently bound to indium atoms. According to atomic-force microscopy data, no etching of the host substrate material occurs during sulfide passivation. A shift (by 0.37 eV) of the In-Sb bulk photoemission towards higher binding energies is found, which indicates that the surface Fermi level shifts deeper into the conduction band. |
---|---|
ISSN: | 1063-7826 1090-6479 |
DOI: | 10.1134/S106378261305014X |