Dendrite fragmentation: an experiment-driven simulation
The processes leading to the fragmentation of secondary dendrite arms are studied using a three-dimensional Sn dendritic structure that was measured experimentally as an initial condition in a phase-field simulation. The phase-field model replicates the kinetics of the coarsening process seen experi...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2018-02, Vol.376 (2113), p.1-15 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The processes leading to the fragmentation of secondary dendrite arms are studied using a three-dimensional Sn dendritic structure that was measured experimentally as an initial condition in a phase-field simulation. The phase-field model replicates the kinetics of the coarsening process seen experimentally. Consistent with the experiment, the simulations of the Sn-rich dendrite show that secondary dendrite arm coalescence is prevalent and that fragmentation is not. The lack of fragmentation is due to the non-axisymmetric morphology and comparatively small spacing of the dendrite arms. A model for the coalescence process is proposed, and, consistent with the model, the radius of the contact region following coalescence increases as t
1/3. We find that small changes in the width and spacing of the dendrite arms can lead to a very different fragmentation-dominated coarsening process. Thus, the alloy system and growth conditions of the dendrite can have a major impact on the fragmentation process.
This article is part of the theme issue ‘From atomistic interfaces to dendritic patterns’. |
---|---|
ISSN: | 1364-503X 1471-2962 |