Dendrite fragmentation: an experiment-driven simulation
The processes leading to the fragmentation of secondary dendrite arms are studied using a three-dimensional Sn dendritic structure that was measured experimentally as an initial condition in a phase-field simulation. The phase-field model replicates the kinetics of the coarsening process seen experi...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2018-02, Vol.376 (2113), p.1-15 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 2113 |
container_start_page | 1 |
container_title | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences |
container_volume | 376 |
creator | Cool, T. Voorhees, P.W. |
description | The processes leading to the fragmentation of secondary dendrite arms are studied using a three-dimensional Sn dendritic structure that was measured experimentally as an initial condition in a phase-field simulation. The phase-field model replicates the kinetics of the coarsening process seen experimentally. Consistent with the experiment, the simulations of the Sn-rich dendrite show that secondary dendrite arm coalescence is prevalent and that fragmentation is not. The lack of fragmentation is due to the non-axisymmetric morphology and comparatively small spacing of the dendrite arms. A model for the coalescence process is proposed, and, consistent with the model, the radius of the contact region following coalescence increases as t
1/3. We find that small changes in the width and spacing of the dendrite arms can lead to a very different fragmentation-dominated coarsening process. Thus, the alloy system and growth conditions of the dendrite can have a major impact on the fragmentation process.
This article is part of the theme issue ‘From atomistic interfaces to dendritic patterns’. |
format | Article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_26600908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26600908</jstor_id><sourcerecordid>26600908</sourcerecordid><originalsourceid>FETCH-jstor_primary_266009083</originalsourceid><addsrcrecordid>eNpjYuA0NDE31DWyNDNiAbKNzUx0TQ2MIzgYuIqLswwMDA3NTI04GcRcUvNSijJLUhXSihLTc1PzShJLMvPzeBhY0xJzilN5oTQ3g6yba4izh25WcUl-UXxBUWZuYlFlvJGZmYGBpYGFMSF5ANt4JrI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dendrite fragmentation: an experiment-driven simulation</title><source>JSTOR Mathematics & Statistics</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Cool, T. ; Voorhees, P.W.</creator><creatorcontrib>Cool, T. ; Voorhees, P.W.</creatorcontrib><description>The processes leading to the fragmentation of secondary dendrite arms are studied using a three-dimensional Sn dendritic structure that was measured experimentally as an initial condition in a phase-field simulation. The phase-field model replicates the kinetics of the coarsening process seen experimentally. Consistent with the experiment, the simulations of the Sn-rich dendrite show that secondary dendrite arm coalescence is prevalent and that fragmentation is not. The lack of fragmentation is due to the non-axisymmetric morphology and comparatively small spacing of the dendrite arms. A model for the coalescence process is proposed, and, consistent with the model, the radius of the contact region following coalescence increases as t
1/3. We find that small changes in the width and spacing of the dendrite arms can lead to a very different fragmentation-dominated coarsening process. Thus, the alloy system and growth conditions of the dendrite can have a major impact on the fragmentation process.
This article is part of the theme issue ‘From atomistic interfaces to dendritic patterns’.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><language>eng</language><publisher>THE ROYAL SOCIETY</publisher><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2018-02, Vol.376 (2113), p.1-15</ispartof><rights>2018 The Author(s)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26600908$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26600908$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,832,58020,58253</link.rule.ids></links><search><creatorcontrib>Cool, T.</creatorcontrib><creatorcontrib>Voorhees, P.W.</creatorcontrib><title>Dendrite fragmentation: an experiment-driven simulation</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><description>The processes leading to the fragmentation of secondary dendrite arms are studied using a three-dimensional Sn dendritic structure that was measured experimentally as an initial condition in a phase-field simulation. The phase-field model replicates the kinetics of the coarsening process seen experimentally. Consistent with the experiment, the simulations of the Sn-rich dendrite show that secondary dendrite arm coalescence is prevalent and that fragmentation is not. The lack of fragmentation is due to the non-axisymmetric morphology and comparatively small spacing of the dendrite arms. A model for the coalescence process is proposed, and, consistent with the model, the radius of the contact region following coalescence increases as t
1/3. We find that small changes in the width and spacing of the dendrite arms can lead to a very different fragmentation-dominated coarsening process. Thus, the alloy system and growth conditions of the dendrite can have a major impact on the fragmentation process.
This article is part of the theme issue ‘From atomistic interfaces to dendritic patterns’.</description><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYuA0NDE31DWyNDNiAbKNzUx0TQ2MIzgYuIqLswwMDA3NTI04GcRcUvNSijJLUhXSihLTc1PzShJLMvPzeBhY0xJzilN5oTQ3g6yba4izh25WcUl-UXxBUWZuYlFlvJGZmYGBpYGFMSF5ANt4JrI</recordid><startdate>20180228</startdate><enddate>20180228</enddate><creator>Cool, T.</creator><creator>Voorhees, P.W.</creator><general>THE ROYAL SOCIETY</general><scope/></search><sort><creationdate>20180228</creationdate><title>Dendrite fragmentation</title><author>Cool, T. ; Voorhees, P.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_266009083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cool, T.</creatorcontrib><creatorcontrib>Voorhees, P.W.</creatorcontrib><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cool, T.</au><au>Voorhees, P.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dendrite fragmentation: an experiment-driven simulation</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><date>2018-02-28</date><risdate>2018</risdate><volume>376</volume><issue>2113</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>The processes leading to the fragmentation of secondary dendrite arms are studied using a three-dimensional Sn dendritic structure that was measured experimentally as an initial condition in a phase-field simulation. The phase-field model replicates the kinetics of the coarsening process seen experimentally. Consistent with the experiment, the simulations of the Sn-rich dendrite show that secondary dendrite arm coalescence is prevalent and that fragmentation is not. The lack of fragmentation is due to the non-axisymmetric morphology and comparatively small spacing of the dendrite arms. A model for the coalescence process is proposed, and, consistent with the model, the radius of the contact region following coalescence increases as t
1/3. We find that small changes in the width and spacing of the dendrite arms can lead to a very different fragmentation-dominated coarsening process. Thus, the alloy system and growth conditions of the dendrite can have a major impact on the fragmentation process.
This article is part of the theme issue ‘From atomistic interfaces to dendritic patterns’.</abstract><pub>THE ROYAL SOCIETY</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-503X |
ispartof | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2018-02, Vol.376 (2113), p.1-15 |
issn | 1364-503X 1471-2962 |
language | eng |
recordid | cdi_jstor_primary_26600908 |
source | JSTOR Mathematics & Statistics; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
title | Dendrite fragmentation: an experiment-driven simulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A35%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dendrite%20fragmentation:%20an%20experiment-driven%20simulation&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Cool,%20T.&rft.date=2018-02-28&rft.volume=376&rft.issue=2113&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/&rft_dat=%3Cjstor%3E26600908%3C/jstor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26600908&rfr_iscdi=true |