Caging Polygonal Objects Using Formationally Similar Three-Finger Hands

Caging offers a robust strategy for grasping objects with robot hands. This letter describes an efficient caging-to-grasping algorithm for polygonal objects using minimalistic three-finger robot hands. This letter describes how to cage and then grasp polygonal objects, using single actuator triangul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2018-10, Vol.3 (4), p.3271-3278
Hauptverfasser: Bunis, Hallel A., Rimon, Elon D., Golan, Yoav, Shapiro, Amir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Caging offers a robust strategy for grasping objects with robot hands. This letter describes an efficient caging-to-grasping algorithm for polygonal objects using minimalistic three-finger robot hands. This letter describes how to cage and then grasp polygonal objects, using single actuator triangular three-finger formations, whose shape is determined by any desired immobilizing grasp of the polygonal object. While the hand's configuration space is four-dimensional, the algorithm uses the hand's two-dimensional contact space, which represents all two- and three-finger contacts along the grasped object boundary. This letter describes how the problem of computing the critical cage formation that allows the object to escape the hand is reduced to a search along a caging graph constructed in the hand's contact space. Starting from a desired immobilizing grasp, the graph is searched for the critical cage formation, which is used to determine the caging regions surrounding the immobilizing grasp. Any three-finger placement within these regions guarantees robust object grasping. The technique is demonstrated with a detailed computational example and a video clip, which shows caging experiments with a single actuator three-finger robot hand.
ISSN:2377-3766
2377-3766
DOI:10.1109/LRA.2018.2851754