Big data analytics for the prediction of tourist preferences worldwide

Big Data analytics and machine learning are being adopted in a range of industries - but how can these technologies be utilised and what can they offer to the tourism industry? In the process of their journeys and in their decision-making processes, people who travel contribute to the generation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Padmaja, N.
Weitere Verfasser: Mohapatra, Sanjay, Subramaniam, Rajalakshmi
Format: E-Book
Sprache:English
Veröffentlicht: Bingley, U.K. Emerald Publishing Limited 2024
Schriftenreihe:Emerald points
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000Ii 4500
001 ZDB-55-ELD-9781835493403
003 UtOrBLW
005 20240321080842.0
006 m o d
007 cr un|||||||||
008 240321t20242024enk ob 001 0 eng d
020 |a 9781835493403 
080 |a 004.6 
100 1 |a Padmaja, N. 
245 1 0 |a Big data analytics for the prediction of tourist preferences worldwide  |c Dr. N. Padmaja (SRI Padmavati Mahila Visvavidyalayam, India), Dr. Rajalakshmi Subramaniam (Talaash Research Consultants, India), Dr. Sanjay Mohapatra (Batoi Systems Pvt Ltd, India) 
264 1 |a Bingley, U.K.  |b Emerald Publishing Limited  |c 2024 
264 4 |c ©2024 
300 |a 1 Online-Ressource (144 Seiten) 
336 |b txt 
337 |b c 
338 |b cr 
490 1 |a Emerald points 
500 |a Includes index. 
520 |a Big Data analytics and machine learning are being adopted in a range of industries - but how can these technologies be utilised and what can they offer to the tourism industry? In the process of their journeys and in their decision-making processes, people who travel contribute to the generation of a huge flow of data; all this information is a potential base for creating smart destinations and improving tourism organizations'potential to customize their products and service offerings. The real execution of such inventive forms of data-driven value generation in tourism continues to be more restricted to the theory or used in a few exceptional cases. Big data and machine learning techniques in tourism persists as an unclear concept and a subject of investigation that necessitates closer analysis from an extensive range of field and research methods. Big Data Analytics for the Prediction of Tourist Preferences Worldwide tackles this challenge, exploring the benefits, importance and demonstrates how Big Data can be applied in predicting tourist preferences and delivering tourism services in a customer friendly manner. The authors provide theoretical and experiential contributions designed to see a wider adoption of these technologies in the tourism industry. 
700 1 |a Mohapatra, Sanjay 
700 1 |a Subramaniam, Rajalakshmi 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9781835493380 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9781835493397 
856 4 0 |l TUM01  |p ZDB-55-ELD  |q TUM_PDA_ELD  |u https://doi.org/10.1108/9781835493380  |3 Volltext 
912 |a ZDB-55-ELD 
912 |a ZDB-55-ELD 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-55-ELD-9781835493403
_version_ 1818768367653224448
adam_text
any_adam_object
author Padmaja, N.
author2 Mohapatra, Sanjay
Subramaniam, Rajalakshmi
author2_role

author2_variant s m sm
r s rs
author_facet Padmaja, N.
Mohapatra, Sanjay
Subramaniam, Rajalakshmi
author_role
author_sort Padmaja, N.
author_variant n p np
building Verbundindex
bvnumber localTUM
collection ZDB-55-ELD
doi_str_mv 10.1108/9781835493380
format eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02395nam a2200325Ii 4500</leader><controlfield tag="001">ZDB-55-ELD-9781835493403</controlfield><controlfield tag="003">UtOrBLW</controlfield><controlfield tag="005">20240321080842.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr un|||||||||</controlfield><controlfield tag="008">240321t20242024enk ob 001 0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781835493403</subfield></datafield><datafield tag="080" ind1=" " ind2=" "><subfield code="a">004.6</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Padmaja, N.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Big data analytics for the prediction of tourist preferences worldwide</subfield><subfield code="c">Dr. N. Padmaja (SRI Padmavati Mahila Visvavidyalayam, India), Dr. Rajalakshmi Subramaniam (Talaash Research Consultants, India), Dr. Sanjay Mohapatra (Batoi Systems Pvt Ltd, India)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Bingley, U.K.</subfield><subfield code="b">Emerald Publishing Limited</subfield><subfield code="c">2024</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (144 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Emerald points</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Big Data analytics and machine learning are being adopted in a range of industries - but how can these technologies be utilised and what can they offer to the tourism industry? In the process of their journeys and in their decision-making processes, people who travel contribute to the generation of a huge flow of data; all this information is a potential base for creating smart destinations and improving tourism organizations'potential to customize their products and service offerings. The real execution of such inventive forms of data-driven value generation in tourism continues to be more restricted to the theory or used in a few exceptional cases. Big data and machine learning techniques in tourism persists as an unclear concept and a subject of investigation that necessitates closer analysis from an extensive range of field and research methods. Big Data Analytics for the Prediction of Tourist Preferences Worldwide tackles this challenge, exploring the benefits, importance and demonstrates how Big Data can be applied in predicting tourist preferences and delivering tourism services in a customer friendly manner. The authors provide theoretical and experiential contributions designed to see a wider adoption of these technologies in the tourism industry.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mohapatra, Sanjay</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Subramaniam, Rajalakshmi</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781835493380</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781835493397</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-55-ELD</subfield><subfield code="q">TUM_PDA_ELD</subfield><subfield code="u">https://doi.org/10.1108/9781835493380</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-55-ELD</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-55-ELD</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-55-ELD-9781835493403
illustrated Not Illustrated
indexdate 2024-12-18T09:04:39Z
institution BVB
isbn 9781835493403
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 Online-Ressource (144 Seiten)
psigel ZDB-55-ELD
publishDate 2024
publishDateSearch 2024
publishDateSort 2024
publisher Emerald Publishing Limited
record_format marc
series2 Emerald points
spelling Padmaja, N.
Big data analytics for the prediction of tourist preferences worldwide Dr. N. Padmaja (SRI Padmavati Mahila Visvavidyalayam, India), Dr. Rajalakshmi Subramaniam (Talaash Research Consultants, India), Dr. Sanjay Mohapatra (Batoi Systems Pvt Ltd, India)
Bingley, U.K. Emerald Publishing Limited 2024
©2024
1 Online-Ressource (144 Seiten)
txt
c
cr
Emerald points
Includes index.
Big Data analytics and machine learning are being adopted in a range of industries - but how can these technologies be utilised and what can they offer to the tourism industry? In the process of their journeys and in their decision-making processes, people who travel contribute to the generation of a huge flow of data; all this information is a potential base for creating smart destinations and improving tourism organizations'potential to customize their products and service offerings. The real execution of such inventive forms of data-driven value generation in tourism continues to be more restricted to the theory or used in a few exceptional cases. Big data and machine learning techniques in tourism persists as an unclear concept and a subject of investigation that necessitates closer analysis from an extensive range of field and research methods. Big Data Analytics for the Prediction of Tourist Preferences Worldwide tackles this challenge, exploring the benefits, importance and demonstrates how Big Data can be applied in predicting tourist preferences and delivering tourism services in a customer friendly manner. The authors provide theoretical and experiential contributions designed to see a wider adoption of these technologies in the tourism industry.
Mohapatra, Sanjay
Subramaniam, Rajalakshmi
Erscheint auch als Druck-Ausgabe 9781835493380
Erscheint auch als Druck-Ausgabe 9781835493397
TUM01 ZDB-55-ELD TUM_PDA_ELD https://doi.org/10.1108/9781835493380 Volltext
spellingShingle Padmaja, N.
Big data analytics for the prediction of tourist preferences worldwide
title Big data analytics for the prediction of tourist preferences worldwide
title_auth Big data analytics for the prediction of tourist preferences worldwide
title_exact_search Big data analytics for the prediction of tourist preferences worldwide
title_full Big data analytics for the prediction of tourist preferences worldwide Dr. N. Padmaja (SRI Padmavati Mahila Visvavidyalayam, India), Dr. Rajalakshmi Subramaniam (Talaash Research Consultants, India), Dr. Sanjay Mohapatra (Batoi Systems Pvt Ltd, India)
title_fullStr Big data analytics for the prediction of tourist preferences worldwide Dr. N. Padmaja (SRI Padmavati Mahila Visvavidyalayam, India), Dr. Rajalakshmi Subramaniam (Talaash Research Consultants, India), Dr. Sanjay Mohapatra (Batoi Systems Pvt Ltd, India)
title_full_unstemmed Big data analytics for the prediction of tourist preferences worldwide Dr. N. Padmaja (SRI Padmavati Mahila Visvavidyalayam, India), Dr. Rajalakshmi Subramaniam (Talaash Research Consultants, India), Dr. Sanjay Mohapatra (Batoi Systems Pvt Ltd, India)
title_short Big data analytics for the prediction of tourist preferences worldwide
title_sort big data analytics for the prediction of tourist preferences worldwide
url https://doi.org/10.1108/9781835493380
work_keys_str_mv AT padmajan bigdataanalyticsforthepredictionoftouristpreferencesworldwide
AT mohapatrasanjay bigdataanalyticsforthepredictionoftouristpreferencesworldwide
AT subramaniamrajalakshmi bigdataanalyticsforthepredictionoftouristpreferencesworldwide