Practical applications of sparse modeling
"Sparse modeling is a rapidly developing area at the intersection of statistical learning and signal processing, motivated by the age-old statistical problem of selecting a small number of predictive variables in high-dimensional datasets. This collection describes key approaches in sparse mode...
Gespeichert in:
Weitere Verfasser: | , , , |
---|---|
Format: | E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, Massachusetts
The MIT Press
[2014]
|
Schriftenreihe: | Neural information processing series
|
Online-Zugang: | MIT Press |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000cam a2200000Ii 4500 | ||
---|---|---|---|
001 | ZDB-260-MPOB-9333 | ||
003 | MaCbMITP | ||
005 | 20190503073424.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 140925s2014 maua ob 001 0 eng d | ||
020 | |a 0262325322 | ||
020 | |a 9780262325325 | ||
024 | 3 | |a 9780262325325 | |
245 | 0 | 0 | |a Practical applications of sparse modeling |c edited by Irina Rish, Guillermo A. Cecchi, Aurelie Lozano, and Alexandru Niculescu-Mizil |
264 | 1 | |a Cambridge, Massachusetts |b The MIT Press |c [2014] | |
264 | 4 | |c ©2014 | |
300 | |a 1 Online-Ressource (xii, 249 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
490 | 1 | |a Neural information processing series | |
520 | |a "Sparse modeling is a rapidly developing area at the intersection of statistical learning and signal processing, motivated by the age-old statistical problem of selecting a small number of predictive variables in high-dimensional datasets. This collection describes key approaches in sparse modeling, focusing on its applications in fields including neuroscience, computational biology, and computer vision. Sparse modeling methods can improve the interpretability of predictive models and aid efficient recovery of high-dimensional unobserved signals from a limited number of measurements. Yet despite significant advances in the field, a number of open issues remain when sparse modeling meets real-life applications. The book discusses a range of practical applications and state-of-the-art approaches for tackling the challenges presented by these applications. Topics considered include the choice of method in genomics applications; analysis of protein mass-spectrometry data; the stability of sparse models in brain imaging applications; sequential testing approaches; algorithmic aspects of sparse recovery; and learning sparse latent models"--MIT CogNet. | ||
700 | 1 | |a Cecchi, Guillermo A. | |
700 | 1 | |a Lozano, Aurélie Chloé |d 1975- | |
700 | 1 | |a Niculescu-Mizil, Alexandru | |
700 | 1 | |a Rish, Irina |d 1969- | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 0262027720 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780262027724 |
856 | 4 | 0 | |l TUM01 |p ZDB-260-MPOB |q TUM_PDA_MPOB |3 MIT Press |u https://doi.org/10.7551/mitpress/9333.001.0001?locatt=mode:legacy |3 Volltext |
912 | |a ZDB-260-MPOB | ||
912 | |a ZDB-260-MPOB | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-260-MPOB-9333 |
---|---|
_version_ | 1818768152962531328 |
adam_text | |
any_adam_object | |
author2 | Cecchi, Guillermo A. Lozano, Aurélie Chloé 1975- Niculescu-Mizil, Alexandru Rish, Irina 1969- |
author2_role | |
author2_variant | g a c ga gac a c l ac acl a n m anm i r ir |
author_facet | Cecchi, Guillermo A. Lozano, Aurélie Chloé 1975- Niculescu-Mizil, Alexandru Rish, Irina 1969- |
author_sort | Cecchi, Guillermo A. |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-260-MPOB |
doi_str_mv | 10.7551/mitpress/9333.001.0001 |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02282cam a2200337Ii 4500</leader><controlfield tag="001">ZDB-260-MPOB-9333</controlfield><controlfield tag="003">MaCbMITP</controlfield><controlfield tag="005">20190503073424.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|||||||||</controlfield><controlfield tag="008">140925s2014 maua ob 001 0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0262325322</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262325325</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780262325325</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Practical applications of sparse modeling</subfield><subfield code="c">edited by Irina Rish, Guillermo A. Cecchi, Aurelie Lozano, and Alexandru Niculescu-Mizil</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, Massachusetts</subfield><subfield code="b">The MIT Press</subfield><subfield code="c">[2014]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 249 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Neural information processing series</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Sparse modeling is a rapidly developing area at the intersection of statistical learning and signal processing, motivated by the age-old statistical problem of selecting a small number of predictive variables in high-dimensional datasets. This collection describes key approaches in sparse modeling, focusing on its applications in fields including neuroscience, computational biology, and computer vision. Sparse modeling methods can improve the interpretability of predictive models and aid efficient recovery of high-dimensional unobserved signals from a limited number of measurements. Yet despite significant advances in the field, a number of open issues remain when sparse modeling meets real-life applications. The book discusses a range of practical applications and state-of-the-art approaches for tackling the challenges presented by these applications. Topics considered include the choice of method in genomics applications; analysis of protein mass-spectrometry data; the stability of sparse models in brain imaging applications; sequential testing approaches; algorithmic aspects of sparse recovery; and learning sparse latent models"--MIT CogNet.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cecchi, Guillermo A.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lozano, Aurélie Chloé</subfield><subfield code="d">1975-</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Niculescu-Mizil, Alexandru</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rish, Irina</subfield><subfield code="d">1969-</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">0262027720</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780262027724</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-260-MPOB</subfield><subfield code="q">TUM_PDA_MPOB</subfield><subfield code="3">MIT Press</subfield><subfield code="u">https://doi.org/10.7551/mitpress/9333.001.0001?locatt=mode:legacy</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-260-MPOB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-260-MPOB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-260-MPOB-9333 |
illustrated | Illustrated |
indexdate | 2024-12-18T09:01:14Z |
institution | BVB |
isbn | 0262325322 9780262325325 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xii, 249 Seiten) |
psigel | ZDB-260-MPOB |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | The MIT Press |
record_format | marc |
series2 | Neural information processing series |
spelling | Practical applications of sparse modeling edited by Irina Rish, Guillermo A. Cecchi, Aurelie Lozano, and Alexandru Niculescu-Mizil Cambridge, Massachusetts The MIT Press [2014] ©2014 1 Online-Ressource (xii, 249 Seiten) txt c cr Neural information processing series "Sparse modeling is a rapidly developing area at the intersection of statistical learning and signal processing, motivated by the age-old statistical problem of selecting a small number of predictive variables in high-dimensional datasets. This collection describes key approaches in sparse modeling, focusing on its applications in fields including neuroscience, computational biology, and computer vision. Sparse modeling methods can improve the interpretability of predictive models and aid efficient recovery of high-dimensional unobserved signals from a limited number of measurements. Yet despite significant advances in the field, a number of open issues remain when sparse modeling meets real-life applications. The book discusses a range of practical applications and state-of-the-art approaches for tackling the challenges presented by these applications. Topics considered include the choice of method in genomics applications; analysis of protein mass-spectrometry data; the stability of sparse models in brain imaging applications; sequential testing approaches; algorithmic aspects of sparse recovery; and learning sparse latent models"--MIT CogNet. Cecchi, Guillermo A. Lozano, Aurélie Chloé 1975- Niculescu-Mizil, Alexandru Rish, Irina 1969- Erscheint auch als Druck-Ausgabe 0262027720 Erscheint auch als Druck-Ausgabe 9780262027724 TUM01 ZDB-260-MPOB TUM_PDA_MPOB MIT Press https://doi.org/10.7551/mitpress/9333.001.0001?locatt=mode:legacy Volltext |
spellingShingle | Practical applications of sparse modeling |
title | Practical applications of sparse modeling |
title_auth | Practical applications of sparse modeling |
title_exact_search | Practical applications of sparse modeling |
title_full | Practical applications of sparse modeling edited by Irina Rish, Guillermo A. Cecchi, Aurelie Lozano, and Alexandru Niculescu-Mizil |
title_fullStr | Practical applications of sparse modeling edited by Irina Rish, Guillermo A. Cecchi, Aurelie Lozano, and Alexandru Niculescu-Mizil |
title_full_unstemmed | Practical applications of sparse modeling edited by Irina Rish, Guillermo A. Cecchi, Aurelie Lozano, and Alexandru Niculescu-Mizil |
title_short | Practical applications of sparse modeling |
title_sort | practical applications of sparse modeling |
url | https://doi.org/10.7551/mitpress/9333.001.0001?locatt=mode:legacy |
work_keys_str_mv | AT cecchiguillermoa practicalapplicationsofsparsemodeling AT lozanoaureliechloe practicalapplicationsofsparsemodeling AT niculescumizilalexandru practicalapplicationsofsparsemodeling AT rishirina practicalapplicationsofsparsemodeling |