Practical applications of sparse modeling

"Sparse modeling is a rapidly developing area at the intersection of statistical learning and signal processing, motivated by the age-old statistical problem of selecting a small number of predictive variables in high-dimensional datasets. This collection describes key approaches in sparse mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Cecchi, Guillermo A., Lozano, Aurélie Chloé 1975-, Niculescu-Mizil, Alexandru, Rish, Irina 1969-
Format: E-Book
Sprache:English
Veröffentlicht: Cambridge, Massachusetts The MIT Press [2014]
Schriftenreihe:Neural information processing series
Online-Zugang:MIT Press
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000cam a2200000Ii 4500
001 ZDB-260-MPOB-9333
003 MaCbMITP
005 20190503073424.0
006 m o d
007 cr |n|||||||||
008 140925s2014 maua ob 001 0 eng d
020 |a 0262325322 
020 |a 9780262325325 
024 3 |a 9780262325325 
245 0 0 |a Practical applications of sparse modeling  |c edited by Irina Rish, Guillermo A. Cecchi, Aurelie Lozano, and Alexandru Niculescu-Mizil 
264 1 |a Cambridge, Massachusetts  |b The MIT Press  |c [2014] 
264 4 |c ©2014 
300 |a 1 Online-Ressource (xii, 249 Seiten) 
336 |b txt 
337 |b c 
338 |b cr 
490 1 |a Neural information processing series 
520 |a "Sparse modeling is a rapidly developing area at the intersection of statistical learning and signal processing, motivated by the age-old statistical problem of selecting a small number of predictive variables in high-dimensional datasets. This collection describes key approaches in sparse modeling, focusing on its applications in fields including neuroscience, computational biology, and computer vision. Sparse modeling methods can improve the interpretability of predictive models and aid efficient recovery of high-dimensional unobserved signals from a limited number of measurements. Yet despite significant advances in the field, a number of open issues remain when sparse modeling meets real-life applications. The book discusses a range of practical applications and state-of-the-art approaches for tackling the challenges presented by these applications. Topics considered include the choice of method in genomics applications; analysis of protein mass-spectrometry data; the stability of sparse models in brain imaging applications; sequential testing approaches; algorithmic aspects of sparse recovery; and learning sparse latent models"--MIT CogNet. 
700 1 |a Cecchi, Guillermo A. 
700 1 |a Lozano, Aurélie Chloé  |d 1975- 
700 1 |a Niculescu-Mizil, Alexandru 
700 1 |a Rish, Irina  |d 1969- 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 0262027720 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9780262027724 
856 4 0 |l TUM01  |p ZDB-260-MPOB  |q TUM_PDA_MPOB  |3 MIT Press  |u https://doi.org/10.7551/mitpress/9333.001.0001?locatt=mode:legacy  |3 Volltext 
912 |a ZDB-260-MPOB 
912 |a ZDB-260-MPOB 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-260-MPOB-9333
_version_ 1818768152962531328
adam_text
any_adam_object
author2 Cecchi, Guillermo A.
Lozano, Aurélie Chloé 1975-
Niculescu-Mizil, Alexandru
Rish, Irina 1969-
author2_role



author2_variant g a c ga gac
a c l ac acl
a n m anm
i r ir
author_facet Cecchi, Guillermo A.
Lozano, Aurélie Chloé 1975-
Niculescu-Mizil, Alexandru
Rish, Irina 1969-
author_sort Cecchi, Guillermo A.
building Verbundindex
bvnumber localTUM
collection ZDB-260-MPOB
doi_str_mv 10.7551/mitpress/9333.001.0001
format eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02282cam a2200337Ii 4500</leader><controlfield tag="001">ZDB-260-MPOB-9333</controlfield><controlfield tag="003">MaCbMITP</controlfield><controlfield tag="005">20190503073424.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|||||||||</controlfield><controlfield tag="008">140925s2014 maua ob 001 0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0262325322</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262325325</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780262325325</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Practical applications of sparse modeling</subfield><subfield code="c">edited by Irina Rish, Guillermo A. Cecchi, Aurelie Lozano, and Alexandru Niculescu-Mizil</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, Massachusetts</subfield><subfield code="b">The MIT Press</subfield><subfield code="c">[2014]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 249 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Neural information processing series</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Sparse modeling is a rapidly developing area at the intersection of statistical learning and signal processing, motivated by the age-old statistical problem of selecting a small number of predictive variables in high-dimensional datasets. This collection describes key approaches in sparse modeling, focusing on its applications in fields including neuroscience, computational biology, and computer vision. Sparse modeling methods can improve the interpretability of predictive models and aid efficient recovery of high-dimensional unobserved signals from a limited number of measurements. Yet despite significant advances in the field, a number of open issues remain when sparse modeling meets real-life applications. The book discusses a range of practical applications and state-of-the-art approaches for tackling the challenges presented by these applications. Topics considered include the choice of method in genomics applications; analysis of protein mass-spectrometry data; the stability of sparse models in brain imaging applications; sequential testing approaches; algorithmic aspects of sparse recovery; and learning sparse latent models"--MIT CogNet.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cecchi, Guillermo A.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lozano, Aurélie Chloé</subfield><subfield code="d">1975-</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Niculescu-Mizil, Alexandru</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rish, Irina</subfield><subfield code="d">1969-</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">0262027720</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780262027724</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-260-MPOB</subfield><subfield code="q">TUM_PDA_MPOB</subfield><subfield code="3">MIT Press</subfield><subfield code="u">https://doi.org/10.7551/mitpress/9333.001.0001?locatt=mode:legacy</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-260-MPOB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-260-MPOB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-260-MPOB-9333
illustrated Illustrated
indexdate 2024-12-18T09:01:14Z
institution BVB
isbn 0262325322
9780262325325
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 Online-Ressource (xii, 249 Seiten)
psigel ZDB-260-MPOB
publishDate 2014
publishDateSearch 2014
publishDateSort 2014
publisher The MIT Press
record_format marc
series2 Neural information processing series
spelling Practical applications of sparse modeling edited by Irina Rish, Guillermo A. Cecchi, Aurelie Lozano, and Alexandru Niculescu-Mizil
Cambridge, Massachusetts The MIT Press [2014]
©2014
1 Online-Ressource (xii, 249 Seiten)
txt
c
cr
Neural information processing series
"Sparse modeling is a rapidly developing area at the intersection of statistical learning and signal processing, motivated by the age-old statistical problem of selecting a small number of predictive variables in high-dimensional datasets. This collection describes key approaches in sparse modeling, focusing on its applications in fields including neuroscience, computational biology, and computer vision. Sparse modeling methods can improve the interpretability of predictive models and aid efficient recovery of high-dimensional unobserved signals from a limited number of measurements. Yet despite significant advances in the field, a number of open issues remain when sparse modeling meets real-life applications. The book discusses a range of practical applications and state-of-the-art approaches for tackling the challenges presented by these applications. Topics considered include the choice of method in genomics applications; analysis of protein mass-spectrometry data; the stability of sparse models in brain imaging applications; sequential testing approaches; algorithmic aspects of sparse recovery; and learning sparse latent models"--MIT CogNet.
Cecchi, Guillermo A.
Lozano, Aurélie Chloé 1975-
Niculescu-Mizil, Alexandru
Rish, Irina 1969-
Erscheint auch als Druck-Ausgabe 0262027720
Erscheint auch als Druck-Ausgabe 9780262027724
TUM01 ZDB-260-MPOB TUM_PDA_MPOB MIT Press https://doi.org/10.7551/mitpress/9333.001.0001?locatt=mode:legacy Volltext
spellingShingle Practical applications of sparse modeling
title Practical applications of sparse modeling
title_auth Practical applications of sparse modeling
title_exact_search Practical applications of sparse modeling
title_full Practical applications of sparse modeling edited by Irina Rish, Guillermo A. Cecchi, Aurelie Lozano, and Alexandru Niculescu-Mizil
title_fullStr Practical applications of sparse modeling edited by Irina Rish, Guillermo A. Cecchi, Aurelie Lozano, and Alexandru Niculescu-Mizil
title_full_unstemmed Practical applications of sparse modeling edited by Irina Rish, Guillermo A. Cecchi, Aurelie Lozano, and Alexandru Niculescu-Mizil
title_short Practical applications of sparse modeling
title_sort practical applications of sparse modeling
url https://doi.org/10.7551/mitpress/9333.001.0001?locatt=mode:legacy
work_keys_str_mv AT cecchiguillermoa practicalapplicationsofsparsemodeling
AT lozanoaureliechloe practicalapplicationsofsparsemodeling
AT niculescumizilalexandru practicalapplicationsofsparsemodeling
AT rishirina practicalapplicationsofsparsemodeling