A New Boundary Element Formulation in Engineering

1. 1 The Hybrid Displacement Boundary Element Model This work is concerned with the derivation of a numerical model for the solution of boundary-value problems in potential theory and linear elasticity. It is considered a boundary element model because the final integral equation involves some bound...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: DeFigueiredo, Tania G. B. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Berlin, Heidelberg Springer Berlin Heidelberg 1991
Schriftenreihe:Lecture Notes in Engineering 68
Schlagworte:
Online-Zugang:DE-634
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV045185356
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 180912s1991 xx o|||| 00||| eng d
020 |a 9783642845048  |9 978-3-642-84504-8 
024 7 |a 10.1007/978-3-642-84504-8  |2 doi 
035 |a (ZDB-2-ENG)978-3-642-84504-8 
035 |a (OCoLC)1053680431 
035 |a (DE-599)BVBBV045185356 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-634 
082 0 |a 531  |2 23 
084 |a SK 910  |0 (DE-625)143270:  |2 rvk 
100 1 |a DeFigueiredo, Tania G. B.  |e Verfasser  |4 aut 
245 1 0 |a A New Boundary Element Formulation in Engineering  |c by Tania G. B. DeFigueiredo 
264 1 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 1991 
300 |a 1 Online-Ressource (IX, 198 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Lecture Notes in Engineering  |v 68 
520 |a 1. 1 The Hybrid Displacement Boundary Element Model This work is concerned with the derivation of a numerical model for the solution of boundary-value problems in potential theory and linear elasticity. It is considered a boundary element model because the final integral equation involves some boundary integrals, whose evaluation requires a boundary discretization. Furthermore, all the unknowns are boundary vari­ ables. The model is completely new; it differs from the classical boundary element formulation ·in the way it is generated and consequently in the fi­ nal equations. A generalized variational principle is used as a basis for its derivation, whereas the conventional boundary element formulation is based on Green's formula (potential problems) and on Somigliana's identity (elas­ ticity), or alternatively through the weighted residual technique. 2 The multi-field variational principle which generates the formulation in­ volves three independent variables. For potential problems, these are the potential in the domain and the potential and its normal derivative on the boundary. In the case of elasticity, these variables are displacements in the domain and displacements and tractions on the boundary. For this reason, by analogy with the assumed displacement hybrid finite element model, ini­ tially proposed by Tong [1] in 1970, it can be called a hybrid displacement model. The final system of equations to be solved is similar to that found in a stiffness formulation. The stiffness matrix for this model is symmetric and can be evaluated by only performing integrations along the boundary 
650 4 |a Physics 
650 4 |a Mechanics 
650 4 |a Math. Applications in Chemistry 
650 4 |a Computational Intelligence 
650 4 |a Physics 
650 4 |a Chemometrics 
650 4 |a Mechanics 
650 4 |a Computational intelligence 
650 0 7 |a Randelemente-Methode  |0 (DE-588)4076508-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Randwertproblem  |0 (DE-588)4048395-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Technik  |0 (DE-588)4059205-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Finite-Elemente-Methode  |0 (DE-588)4017233-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Variationsprinzip  |0 (DE-588)4062354-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Elastizität  |0 (DE-588)4014159-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Elastostatik  |0 (DE-588)4123125-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Potenzialtheorie  |0 (DE-588)4046939-6  |2 gnd  |9 rswk-swf 
655 7 |8 1\p  |0 (DE-588)4113937-9  |a Hochschulschrift  |2 gnd-content 
689 0 0 |a Elastostatik  |0 (DE-588)4123125-9  |D s 
689 0 1 |a Randelemente-Methode  |0 (DE-588)4076508-8  |D s 
689 0 2 |a Variationsprinzip  |0 (DE-588)4062354-3  |D s 
689 0 |8 2\p  |5 DE-604 
689 1 0 |a Potenzialtheorie  |0 (DE-588)4046939-6  |D s 
689 1 1 |a Randelemente-Methode  |0 (DE-588)4076508-8  |D s 
689 1 2 |a Variationsprinzip  |0 (DE-588)4062354-3  |D s 
689 1 |8 3\p  |5 DE-604 
689 2 0 |a Randelemente-Methode  |0 (DE-588)4076508-8  |D s 
689 2 1 |a Technik  |0 (DE-588)4059205-4  |D s 
689 2 |8 4\p  |5 DE-604 
689 3 0 |a Elastizität  |0 (DE-588)4014159-7  |D s 
689 3 |8 5\p  |5 DE-604 
689 4 0 |a Randwertproblem  |0 (DE-588)4048395-2  |D s 
689 4 |8 6\p  |5 DE-604 
689 5 0 |a Finite-Elemente-Methode  |0 (DE-588)4017233-8  |D s 
689 5 |8 7\p  |5 DE-604 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9783540540304 
856 4 0 |u https://doi.org/10.1007/978-3-642-84504-8  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-2-ENG 
940 1 |q ZDB-2-ENG_Archiv 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 3\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 4\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 5\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 6\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 7\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-030574534 
966 e |u https://doi.org/10.1007/978-3-642-84504-8  |l DE-634  |p ZDB-2-ENG  |q ZDB-2-ENG_Archiv  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1819303579203141632
any_adam_object
author DeFigueiredo, Tania G. B.
author_facet DeFigueiredo, Tania G. B.
author_role aut
author_sort DeFigueiredo, Tania G. B.
author_variant t g b d tgb tgbd
building Verbundindex
bvnumber BV045185356
classification_rvk SK 910
collection ZDB-2-ENG
ctrlnum (ZDB-2-ENG)978-3-642-84504-8
(OCoLC)1053680431
(DE-599)BVBBV045185356
dewey-full 531
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 531 - Classical mechanics
dewey-raw 531
dewey-search 531
dewey-sort 3531
dewey-tens 530 - Physics
discipline Physik
Mathematik
doi_str_mv 10.1007/978-3-642-84504-8
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05226nam a2200877zcb4500</leader><controlfield tag="001">BV045185356</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180912s1991 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642845048</subfield><subfield code="9">978-3-642-84504-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-84504-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-3-642-84504-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1053680431</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045185356</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">531</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 910</subfield><subfield code="0">(DE-625)143270:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">DeFigueiredo, Tania G. B.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A New Boundary Element Formulation in Engineering</subfield><subfield code="c">by Tania G. B. DeFigueiredo</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 198 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Engineering</subfield><subfield code="v">68</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">1. 1 The Hybrid Displacement Boundary Element Model This work is concerned with the derivation of a numerical model for the solution of boundary-value problems in potential theory and linear elasticity. It is considered a boundary element model because the final integral equation involves some boundary integrals, whose evaluation requires a boundary discretization. Furthermore, all the unknowns are boundary vari­ ables. The model is completely new; it differs from the classical boundary element formulation ·in the way it is generated and consequently in the fi­ nal equations. A generalized variational principle is used as a basis for its derivation, whereas the conventional boundary element formulation is based on Green's formula (potential problems) and on Somigliana's identity (elas­ ticity), or alternatively through the weighted residual technique. 2 The multi-field variational principle which generates the formulation in­ volves three independent variables. For potential problems, these are the potential in the domain and the potential and its normal derivative on the boundary. In the case of elasticity, these variables are displacements in the domain and displacements and tractions on the boundary. For this reason, by analogy with the assumed displacement hybrid finite element model, ini­ tially proposed by Tong [1] in 1970, it can be called a hybrid displacement model. The final system of equations to be solved is similar to that found in a stiffness formulation. The stiffness matrix for this model is symmetric and can be evaluated by only performing integrations along the boundary</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Math. Applications in Chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemometrics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational intelligence</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Randelemente-Methode</subfield><subfield code="0">(DE-588)4076508-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Technik</subfield><subfield code="0">(DE-588)4059205-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Finite-Elemente-Methode</subfield><subfield code="0">(DE-588)4017233-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Variationsprinzip</subfield><subfield code="0">(DE-588)4062354-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elastizität</subfield><subfield code="0">(DE-588)4014159-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elastostatik</subfield><subfield code="0">(DE-588)4123125-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Potenzialtheorie</subfield><subfield code="0">(DE-588)4046939-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elastostatik</subfield><subfield code="0">(DE-588)4123125-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Randelemente-Methode</subfield><subfield code="0">(DE-588)4076508-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Variationsprinzip</subfield><subfield code="0">(DE-588)4062354-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Potenzialtheorie</subfield><subfield code="0">(DE-588)4046939-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Randelemente-Methode</subfield><subfield code="0">(DE-588)4076508-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Variationsprinzip</subfield><subfield code="0">(DE-588)4062354-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Randelemente-Methode</subfield><subfield code="0">(DE-588)4076508-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Technik</subfield><subfield code="0">(DE-588)4059205-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Elastizität</subfield><subfield code="0">(DE-588)4014159-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">6\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Finite-Elemente-Methode</subfield><subfield code="0">(DE-588)4017233-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="8">7\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783540540304</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-84504-8</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_Archiv</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">7\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030574534</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-84504-8</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
genre 1\p (DE-588)4113937-9 Hochschulschrift gnd-content
genre_facet Hochschulschrift
id DE-604.BV045185356
illustrated Not Illustrated
indexdate 2024-12-24T06:51:37Z
institution BVB
isbn 9783642845048
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-030574534
oclc_num 1053680431
open_access_boolean
owner DE-634
owner_facet DE-634
physical 1 Online-Ressource (IX, 198 p)
psigel ZDB-2-ENG
ZDB-2-ENG_Archiv
ZDB-2-ENG ZDB-2-ENG_Archiv
publishDate 1991
publishDateSearch 1991
publishDateSort 1991
publisher Springer Berlin Heidelberg
record_format marc
series2 Lecture Notes in Engineering
spelling DeFigueiredo, Tania G. B. Verfasser aut
A New Boundary Element Formulation in Engineering by Tania G. B. DeFigueiredo
Berlin, Heidelberg Springer Berlin Heidelberg 1991
1 Online-Ressource (IX, 198 p)
txt rdacontent
c rdamedia
cr rdacarrier
Lecture Notes in Engineering 68
1. 1 The Hybrid Displacement Boundary Element Model This work is concerned with the derivation of a numerical model for the solution of boundary-value problems in potential theory and linear elasticity. It is considered a boundary element model because the final integral equation involves some boundary integrals, whose evaluation requires a boundary discretization. Furthermore, all the unknowns are boundary vari­ ables. The model is completely new; it differs from the classical boundary element formulation ·in the way it is generated and consequently in the fi­ nal equations. A generalized variational principle is used as a basis for its derivation, whereas the conventional boundary element formulation is based on Green's formula (potential problems) and on Somigliana's identity (elas­ ticity), or alternatively through the weighted residual technique. 2 The multi-field variational principle which generates the formulation in­ volves three independent variables. For potential problems, these are the potential in the domain and the potential and its normal derivative on the boundary. In the case of elasticity, these variables are displacements in the domain and displacements and tractions on the boundary. For this reason, by analogy with the assumed displacement hybrid finite element model, ini­ tially proposed by Tong [1] in 1970, it can be called a hybrid displacement model. The final system of equations to be solved is similar to that found in a stiffness formulation. The stiffness matrix for this model is symmetric and can be evaluated by only performing integrations along the boundary
Physics
Mechanics
Math. Applications in Chemistry
Computational Intelligence
Chemometrics
Computational intelligence
Randelemente-Methode (DE-588)4076508-8 gnd rswk-swf
Randwertproblem (DE-588)4048395-2 gnd rswk-swf
Technik (DE-588)4059205-4 gnd rswk-swf
Finite-Elemente-Methode (DE-588)4017233-8 gnd rswk-swf
Variationsprinzip (DE-588)4062354-3 gnd rswk-swf
Elastizität (DE-588)4014159-7 gnd rswk-swf
Elastostatik (DE-588)4123125-9 gnd rswk-swf
Potenzialtheorie (DE-588)4046939-6 gnd rswk-swf
1\p (DE-588)4113937-9 Hochschulschrift gnd-content
Elastostatik (DE-588)4123125-9 s
Randelemente-Methode (DE-588)4076508-8 s
Variationsprinzip (DE-588)4062354-3 s
2\p DE-604
Potenzialtheorie (DE-588)4046939-6 s
3\p DE-604
Technik (DE-588)4059205-4 s
4\p DE-604
Elastizität (DE-588)4014159-7 s
5\p DE-604
Randwertproblem (DE-588)4048395-2 s
6\p DE-604
Finite-Elemente-Methode (DE-588)4017233-8 s
7\p DE-604
Erscheint auch als Druck-Ausgabe 9783540540304
https://doi.org/10.1007/978-3-642-84504-8 Verlag URL des Erstveröffentlichers Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
6\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
7\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle DeFigueiredo, Tania G. B.
A New Boundary Element Formulation in Engineering
Physics
Mechanics
Math. Applications in Chemistry
Computational Intelligence
Chemometrics
Computational intelligence
Randelemente-Methode (DE-588)4076508-8 gnd
Randwertproblem (DE-588)4048395-2 gnd
Technik (DE-588)4059205-4 gnd
Finite-Elemente-Methode (DE-588)4017233-8 gnd
Variationsprinzip (DE-588)4062354-3 gnd
Elastizität (DE-588)4014159-7 gnd
Elastostatik (DE-588)4123125-9 gnd
Potenzialtheorie (DE-588)4046939-6 gnd
subject_GND (DE-588)4076508-8
(DE-588)4048395-2
(DE-588)4059205-4
(DE-588)4017233-8
(DE-588)4062354-3
(DE-588)4014159-7
(DE-588)4123125-9
(DE-588)4046939-6
(DE-588)4113937-9
title A New Boundary Element Formulation in Engineering
title_auth A New Boundary Element Formulation in Engineering
title_exact_search A New Boundary Element Formulation in Engineering
title_full A New Boundary Element Formulation in Engineering by Tania G. B. DeFigueiredo
title_fullStr A New Boundary Element Formulation in Engineering by Tania G. B. DeFigueiredo
title_full_unstemmed A New Boundary Element Formulation in Engineering by Tania G. B. DeFigueiredo
title_short A New Boundary Element Formulation in Engineering
title_sort a new boundary element formulation in engineering
topic Physics
Mechanics
Math. Applications in Chemistry
Computational Intelligence
Chemometrics
Computational intelligence
Randelemente-Methode (DE-588)4076508-8 gnd
Randwertproblem (DE-588)4048395-2 gnd
Technik (DE-588)4059205-4 gnd
Finite-Elemente-Methode (DE-588)4017233-8 gnd
Variationsprinzip (DE-588)4062354-3 gnd
Elastizität (DE-588)4014159-7 gnd
Elastostatik (DE-588)4123125-9 gnd
Potenzialtheorie (DE-588)4046939-6 gnd
topic_facet Physics
Mechanics
Math. Applications in Chemistry
Computational Intelligence
Chemometrics
Computational intelligence
Randelemente-Methode
Randwertproblem
Technik
Finite-Elemente-Methode
Variationsprinzip
Elastizität
Elastostatik
Potenzialtheorie
Hochschulschrift
url https://doi.org/10.1007/978-3-642-84504-8
work_keys_str_mv AT defigueiredotaniagb anewboundaryelementformulationinengineering