Optical physics for nanolithography

This book provides an in-depth, self-contained introduction of partially coherent imaging theory for researchers and engineers working on optical lithography for semiconductor manufacturing, including those in the EDA industry. It is mathematically complete: the opening chapters discuss the essentia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yen, Anthony (VerfasserIn), Yu, Shinn-Sheng (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Bellingham, Washington, USA SPIE Press [2018]
Schlagworte:
Online-Zugang:DE-1050
DE-92
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Inhaltsangabe:
  • Preface
  • Notations and conventions
  • 1. Mathematical preliminaries: 1.1. Mean-value theorems of integral calculus; 1.2. The delta function; 1.3. Weierstrass' approximation theorem; 1.4. Fourier transform; 1.5. Vector algebra; 1.6. Vector calculus; 1.7. Curvilinear coordinates; 1.8. Solution to Poisson's equation; 1.9. Helmholtz's theorem
  • 2. Electromagnetic waves in free space: 2.1. Maxwell's equations in free space; 2.2. Electromagnetic radiation; 2.3. Systematic solution of inhomogeneous wave equations with boundary and initial conditions; 2.4. Solution inhomogeneous wave equations with harmonic time dependence
  • 3. Electromagnetic waves in material media: 3.1. Macroscopic fields in material media; 3.2. Energy in electromagnetic fields; 3.3. Hertz vectors; 3.4. Fields of an electric dipole; 3.5. Dielectric properties of matter; 3.6. Physical origin of reflection and transmission; Ewald-Oseen extinction theorem; 3.7. Reflection and transmission upon incidence on a multilayer stack
  • 4. Elements of geometrical optics: 4.1. Geometrical wavefronts and light rays; 4.2. Fermat's principle; 4.3. The characteristic functions of Hamilton; 4.4. The sine condition; 4.5. The Herschel condition; 4.6. The paraxial approximation; 4.7. The Smith-Helmholtz invariant; 4.8. The thin lens formula; 4.9. Stops, pupils, and windows; 4.10. Chief and marginal rays; meridional, tangential, and sagittal planes; meridional and skew rays
  • 5. Diffraction of electromagnetic waves: 5.1. The scalar theory of diffraction; 5.2. Fresnel and Fraunhofer approximations; 5.3. Representation of the diffracted field by the angular spectrum of plane waves; 5.4. The vector theory of diffraction
  • 6. Image formation in an optical system: 6.1. Heuristic imaging theory; 6.2. The lithographic imaging system; 6.3. Imaging by a point source: coherent imaging; 6.4. Imaging by an extended source: partially coherent imaging; 6.5. Yamazoe’s stacked shifted pupil formulation; 6.6. Imaging with a higher numerical aperture: radiometric correction; 6.7. 3‐D point spread function; 6.8. Imaging with a higher numerical aperture: polarization effect
  • 7. Aberrations in optical imaging systems: 7.1. Design of aspherical surfaces; 7.2. Connection between ray and wave aberrations; 7.3. The wave aberration for rotationally symmetric optical systems: Seidel aberrations; 7.4. General form of the aberration function for rotationally symmetric optical systems; 7.5. Digression: Gram-Schmidt orthogonalization process and orthogonal polynomials; 7.6. Orthogonal polynomials for expanding the aberration function: Zernike polynomials
  • Index