Generalized principal component analysis

This book provides a comprehensive introduction to the latest advances in the mathematical theory and computational tools for modeling high-dimensional data drawn from one or multiple low-dimensional subspaces (or manifolds) and potentially corrupted by noise, gross errors, or outliers. This challen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vidal, René (VerfasserIn), Ma, Yi (VerfasserIn), Sastry, Shankar 1956- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: New York ; Heidelberg ; Dordrecht ; London Springer [2016]
Schriftenreihe:Interdisciplinary applied mathematics volume 40
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV044603336
003 DE-604
005 20210609
007 t|
008 171107s2016 xxuac|| |||| 00||| eng d
010 |a 015958763 
020 |a 9780387878102  |c hbk.  |9 978-0-387-87810-2 
020 |a 0387878106  |9 0-387-87810-6 
020 |a 9781493979127  |c Softcover reprint  |9 978-1-4939-7912-7 
035 |a (OCoLC)950461104 
035 |a (DE-599)BVBBV044603336 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
044 |a xxu  |c US 
049 |a DE-92  |a DE-11  |a DE-83  |a DE-188 
050 0 |a QA300 
082 0 |a 515/.9  |2 23 
084 |a SK 830  |0 (DE-625)143259:  |2 rvk 
084 |a SK 750  |0 (DE-625)143254:  |2 rvk 
084 |a SK 850  |0 (DE-625)143263:  |2 rvk 
084 |a 62H35  |2 msc 
084 |a 62H25  |2 msc 
084 |a 62H30  |2 msc 
100 1 |a Vidal, René  |0 (DE-588)1112677461  |4 aut 
245 1 0 |a Generalized principal component analysis  |c René Vidal, Yi Ma, S. Shankar Sastry 
264 1 |a New York ; Heidelberg ; Dordrecht ; London  |b Springer  |c [2016] 
264 4 |c © 2016 
300 |a xxxii, 566 Seiten  |b Illustrationen, Diagramme, Portraits (überwiegend farbig) 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Interdisciplinary applied mathematics  |v volume 40 
500 |a Literaturangaben Seite 535-552 
520 |a This book provides a comprehensive introduction to the latest advances in the mathematical theory and computational tools for modeling high-dimensional data drawn from one or multiple low-dimensional subspaces (or manifolds) and potentially corrupted by noise, gross errors, or outliers. This challenging task requires the development of new algebraic, geometric, statistical, and computational methods for efficient and robust estimation and segmentation of one or multiple subspaces. The book also presents interesting real-world applications of these new methods in image processing, image and video segmentation, face recognition and clustering, and hybrid system identification etc. This book is intended to serve as a textbook for graduate students and beginning researchers in data science, machine learning, computer vision, image and signal processing, and systems theory. It contains ample illustrations, examples, and exercises and is made largely self-contained with three Appendices which survey basic concepts and principles from statistics, optimization, and algebraic-geometry used in this book. 
650 4 |a Mathematical analysis  |v Textbooks 
650 4 |a Image processing  |x Mathematics  |v Textbooks 
650 4 |a Big data  |v Textbooks 
650 4 |a Manifolds (Mathematics)  |v Textbooks 
650 4 |a Big data 
650 4 |a Image processing 
650 4 |a Manifolds (Mathematics) 
650 4 |a Mathematical analysis 
650 0 7 |a Hauptkomponentenanalyse  |0 (DE-588)4129174-8  |2 gnd  |9 rswk-swf 
689 0 0 |a Hauptkomponentenanalyse  |0 (DE-588)4129174-8  |D s 
689 0 |5 DE-604 
700 1 |a Ma, Yi  |0 (DE-588)142301809  |4 aut 
700 1 |a Sastry, Shankar  |d 1956-  |0 (DE-588)121291057  |4 aut 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-0-387-87811-9 
830 0 |a Interdisciplinary applied mathematics  |v volume 40  |w (DE-604)BV004216726  |9 40 
943 1 |a oai:aleph.bib-bvb.de:BVB01-030001718 

Datensatz im Suchindex

_version_ 1819301155464806400
any_adam_object
author Vidal, René
Ma, Yi
Sastry, Shankar 1956-
author_GND (DE-588)1112677461
(DE-588)142301809
(DE-588)121291057
author_facet Vidal, René
Ma, Yi
Sastry, Shankar 1956-
author_role aut
aut
aut
author_sort Vidal, René
author_variant r v rv
y m ym
s s ss
building Verbundindex
bvnumber BV044603336
callnumber-first Q - Science
callnumber-label QA300
callnumber-raw QA300
callnumber-search QA300
callnumber-sort QA 3300
callnumber-subject QA - Mathematics
classification_rvk SK 830
SK 750
SK 850
ctrlnum (OCoLC)950461104
(DE-599)BVBBV044603336
dewey-full 515/.9
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515/.9
dewey-search 515/.9
dewey-sort 3515 19
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03302nam a2200625 cb4500</leader><controlfield tag="001">BV044603336</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210609 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">171107s2016 xxuac|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">015958763</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387878102</subfield><subfield code="c">hbk.</subfield><subfield code="9">978-0-387-87810-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387878106</subfield><subfield code="9">0-387-87810-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781493979127</subfield><subfield code="c">Softcover reprint</subfield><subfield code="9">978-1-4939-7912-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)950461104</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044603336</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA300</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.9</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 750</subfield><subfield code="0">(DE-625)143254:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 850</subfield><subfield code="0">(DE-625)143263:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">62H35</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">62H25</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">62H30</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vidal, René</subfield><subfield code="0">(DE-588)1112677461</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Generalized principal component analysis</subfield><subfield code="c">René Vidal, Yi Ma, S. Shankar Sastry</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York ; Heidelberg ; Dordrecht ; London</subfield><subfield code="b">Springer</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxxii, 566 Seiten</subfield><subfield code="b">Illustrationen, Diagramme, Portraits (überwiegend farbig)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Interdisciplinary applied mathematics</subfield><subfield code="v">volume 40</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben Seite 535-552</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book provides a comprehensive introduction to the latest advances in the mathematical theory and computational tools for modeling high-dimensional data drawn from one or multiple low-dimensional subspaces (or manifolds) and potentially corrupted by noise, gross errors, or outliers. This challenging task requires the development of new algebraic, geometric, statistical, and computational methods for efficient and robust estimation and segmentation of one or multiple subspaces. The book also presents interesting real-world applications of these new methods in image processing, image and video segmentation, face recognition and clustering, and hybrid system identification etc. This book is intended to serve as a textbook for graduate students and beginning researchers in data science, machine learning, computer vision, image and signal processing, and systems theory. It contains ample illustrations, examples, and exercises and is made largely self-contained with three Appendices which survey basic concepts and principles from statistics, optimization, and algebraic-geometry used in this book.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield><subfield code="v">Textbooks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image processing</subfield><subfield code="x">Mathematics</subfield><subfield code="v">Textbooks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data</subfield><subfield code="v">Textbooks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds (Mathematics)</subfield><subfield code="v">Textbooks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hauptkomponentenanalyse</subfield><subfield code="0">(DE-588)4129174-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hauptkomponentenanalyse</subfield><subfield code="0">(DE-588)4129174-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Yi</subfield><subfield code="0">(DE-588)142301809</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sastry, Shankar</subfield><subfield code="d">1956-</subfield><subfield code="0">(DE-588)121291057</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-0-387-87811-9</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Interdisciplinary applied mathematics</subfield><subfield code="v">volume 40</subfield><subfield code="w">(DE-604)BV004216726</subfield><subfield code="9">40</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030001718</subfield></datafield></record></collection>
id DE-604.BV044603336
illustrated Illustrated
indexdate 2024-12-24T06:13:05Z
institution BVB
isbn 9780387878102
0387878106
9781493979127
language English
lccn 015958763
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-030001718
oclc_num 950461104
open_access_boolean
owner DE-92
DE-11
DE-83
DE-188
owner_facet DE-92
DE-11
DE-83
DE-188
physical xxxii, 566 Seiten Illustrationen, Diagramme, Portraits (überwiegend farbig)
publishDate 2016
publishDateSearch 2016
publishDateSort 2016
publisher Springer
record_format marc
series Interdisciplinary applied mathematics
series2 Interdisciplinary applied mathematics
spelling Vidal, René (DE-588)1112677461 aut
Generalized principal component analysis René Vidal, Yi Ma, S. Shankar Sastry
New York ; Heidelberg ; Dordrecht ; London Springer [2016]
© 2016
xxxii, 566 Seiten Illustrationen, Diagramme, Portraits (überwiegend farbig)
txt rdacontent
n rdamedia
nc rdacarrier
Interdisciplinary applied mathematics volume 40
Literaturangaben Seite 535-552
This book provides a comprehensive introduction to the latest advances in the mathematical theory and computational tools for modeling high-dimensional data drawn from one or multiple low-dimensional subspaces (or manifolds) and potentially corrupted by noise, gross errors, or outliers. This challenging task requires the development of new algebraic, geometric, statistical, and computational methods for efficient and robust estimation and segmentation of one or multiple subspaces. The book also presents interesting real-world applications of these new methods in image processing, image and video segmentation, face recognition and clustering, and hybrid system identification etc. This book is intended to serve as a textbook for graduate students and beginning researchers in data science, machine learning, computer vision, image and signal processing, and systems theory. It contains ample illustrations, examples, and exercises and is made largely self-contained with three Appendices which survey basic concepts and principles from statistics, optimization, and algebraic-geometry used in this book.
Mathematical analysis Textbooks
Image processing Mathematics Textbooks
Big data Textbooks
Manifolds (Mathematics) Textbooks
Big data
Image processing
Manifolds (Mathematics)
Mathematical analysis
Hauptkomponentenanalyse (DE-588)4129174-8 gnd rswk-swf
Hauptkomponentenanalyse (DE-588)4129174-8 s
DE-604
Ma, Yi (DE-588)142301809 aut
Sastry, Shankar 1956- (DE-588)121291057 aut
Erscheint auch als Online-Ausgabe 978-0-387-87811-9
Interdisciplinary applied mathematics volume 40 (DE-604)BV004216726 40
spellingShingle Vidal, René
Ma, Yi
Sastry, Shankar 1956-
Generalized principal component analysis
Interdisciplinary applied mathematics
Mathematical analysis Textbooks
Image processing Mathematics Textbooks
Big data Textbooks
Manifolds (Mathematics) Textbooks
Big data
Image processing
Manifolds (Mathematics)
Mathematical analysis
Hauptkomponentenanalyse (DE-588)4129174-8 gnd
subject_GND (DE-588)4129174-8
title Generalized principal component analysis
title_auth Generalized principal component analysis
title_exact_search Generalized principal component analysis
title_full Generalized principal component analysis René Vidal, Yi Ma, S. Shankar Sastry
title_fullStr Generalized principal component analysis René Vidal, Yi Ma, S. Shankar Sastry
title_full_unstemmed Generalized principal component analysis René Vidal, Yi Ma, S. Shankar Sastry
title_short Generalized principal component analysis
title_sort generalized principal component analysis
topic Mathematical analysis Textbooks
Image processing Mathematics Textbooks
Big data Textbooks
Manifolds (Mathematics) Textbooks
Big data
Image processing
Manifolds (Mathematics)
Mathematical analysis
Hauptkomponentenanalyse (DE-588)4129174-8 gnd
topic_facet Mathematical analysis Textbooks
Image processing Mathematics Textbooks
Big data Textbooks
Manifolds (Mathematics) Textbooks
Big data
Image processing
Manifolds (Mathematics)
Mathematical analysis
Hauptkomponentenanalyse
volume_link (DE-604)BV004216726
work_keys_str_mv AT vidalrene generalizedprincipalcomponentanalysis
AT mayi generalizedprincipalcomponentanalysis
AT sastryshankar generalizedprincipalcomponentanalysis