A promising genetic algorithm approach to job-shop scheduling, rescheduling, and open-shop scheduling problems

Abstract: "The general job-shop scheduling problem is known to be extremely hard. We describe a GA approach which produces reasonably good results very quickly on standard benchmark job-shop scheduling problems, better than previous efforts using genetic algorithms for this task, and comparable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fang, Hsiao-Lan (VerfasserIn), Ross, Peter (VerfasserIn), Corne, Dave (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Edinburgh 1993
Schriftenreihe:University <Edinburgh> / Department of Artificial Intelligence: DAI research paper 623
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV010463139
003 DE-604
005 00000000000000.0
007 t
008 951106s1993 |||| 00||| engod
035 |a (OCoLC)32307137 
035 |a (DE-599)BVBBV010463139 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-91G 
100 1 |a Fang, Hsiao-Lan  |e Verfasser  |4 aut 
245 1 0 |a A promising genetic algorithm approach to job-shop scheduling, rescheduling, and open-shop scheduling problems  |c Hsiao-Lan Fang, Peter Ross, and Dave Corne 
264 1 |a Edinburgh  |c 1993 
300 |a 9 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a University <Edinburgh> / Department of Artificial Intelligence: DAI research paper  |v 623 
520 3 |a Abstract: "The general job-shop scheduling problem is known to be extremely hard. We describe a GA approach which produces reasonably good results very quickly on standard benchmark job-shop scheduling problems, better than previous efforts using genetic algorithms for this task, and comparable to existing conventional search-based methods. The representation used is a variant of one known to work moderately well for the traveling salesman problem. It has the considerable merit that crossover will always produce legal schedules. A novel method for performance enhancement is examined based on dynamic sampling of the convergence rates in different parts of the genome. Our approach also promises to effectively address the open-shop scheduling problem and the job-shop rescheduling problem." 
650 7 |a Applied statistics, operational research  |2 sigle 
650 7 |a Mathematics  |2 sigle 
650 4 |a Mathematik 
650 4 |a Genetic algorithms 
700 1 |a Ross, Peter  |e Verfasser  |4 aut 
700 1 |a Corne, Dave  |e Verfasser  |4 aut 
810 2 |a Department of Artificial Intelligence: DAI research paper  |t University <Edinburgh>  |v 623  |w (DE-604)BV010450646  |9 623 
999 |a oai:aleph.bib-bvb.de:BVB01-006971556 

Datensatz im Suchindex

DE-BY-TUM_call_number 0111/2001 B 6034-623
DE-BY-TUM_katkey 664195
DE-BY-TUM_media_number 040020063083
_version_ 1816711722036101121
any_adam_object
author Fang, Hsiao-Lan
Ross, Peter
Corne, Dave
author_facet Fang, Hsiao-Lan
Ross, Peter
Corne, Dave
author_role aut
aut
aut
author_sort Fang, Hsiao-Lan
author_variant h l f hlf
p r pr
d c dc
building Verbundindex
bvnumber BV010463139
ctrlnum (OCoLC)32307137
(DE-599)BVBBV010463139
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02031nam a2200349 cb4500</leader><controlfield tag="001">BV010463139</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">951106s1993 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)32307137</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010463139</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fang, Hsiao-Lan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A promising genetic algorithm approach to job-shop scheduling, rescheduling, and open-shop scheduling problems</subfield><subfield code="c">Hsiao-Lan Fang, Peter Ross, and Dave Corne</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Edinburgh</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">University &lt;Edinburgh&gt; / Department of Artificial Intelligence: DAI research paper</subfield><subfield code="v">623</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "The general job-shop scheduling problem is known to be extremely hard. We describe a GA approach which produces reasonably good results very quickly on standard benchmark job-shop scheduling problems, better than previous efforts using genetic algorithms for this task, and comparable to existing conventional search-based methods. The representation used is a variant of one known to work moderately well for the traveling salesman problem. It has the considerable merit that crossover will always produce legal schedules. A novel method for performance enhancement is examined based on dynamic sampling of the convergence rates in different parts of the genome. Our approach also promises to effectively address the open-shop scheduling problem and the job-shop rescheduling problem."</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Applied statistics, operational research</subfield><subfield code="2">sigle</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematics</subfield><subfield code="2">sigle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genetic algorithms</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ross, Peter</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Corne, Dave</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Department of Artificial Intelligence: DAI research paper</subfield><subfield code="t">University &lt;Edinburgh&gt;</subfield><subfield code="v">623</subfield><subfield code="w">(DE-604)BV010450646</subfield><subfield code="9">623</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006971556</subfield></datafield></record></collection>
id DE-604.BV010463139
illustrated Not Illustrated
indexdate 2024-11-25T17:14:19Z
institution BVB
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-006971556
oclc_num 32307137
open_access_boolean
owner DE-91G
DE-BY-TUM
owner_facet DE-91G
DE-BY-TUM
physical 9 S.
publishDate 1993
publishDateSearch 1993
publishDateSort 1993
record_format marc
series2 University <Edinburgh> / Department of Artificial Intelligence: DAI research paper
spellingShingle Fang, Hsiao-Lan
Ross, Peter
Corne, Dave
A promising genetic algorithm approach to job-shop scheduling, rescheduling, and open-shop scheduling problems
Applied statistics, operational research sigle
Mathematics sigle
Mathematik
Genetic algorithms
title A promising genetic algorithm approach to job-shop scheduling, rescheduling, and open-shop scheduling problems
title_auth A promising genetic algorithm approach to job-shop scheduling, rescheduling, and open-shop scheduling problems
title_exact_search A promising genetic algorithm approach to job-shop scheduling, rescheduling, and open-shop scheduling problems
title_full A promising genetic algorithm approach to job-shop scheduling, rescheduling, and open-shop scheduling problems Hsiao-Lan Fang, Peter Ross, and Dave Corne
title_fullStr A promising genetic algorithm approach to job-shop scheduling, rescheduling, and open-shop scheduling problems Hsiao-Lan Fang, Peter Ross, and Dave Corne
title_full_unstemmed A promising genetic algorithm approach to job-shop scheduling, rescheduling, and open-shop scheduling problems Hsiao-Lan Fang, Peter Ross, and Dave Corne
title_short A promising genetic algorithm approach to job-shop scheduling, rescheduling, and open-shop scheduling problems
title_sort a promising genetic algorithm approach to job shop scheduling rescheduling and open shop scheduling problems
topic Applied statistics, operational research sigle
Mathematics sigle
Mathematik
Genetic algorithms
topic_facet Applied statistics, operational research
Mathematics
Mathematik
Genetic algorithms
volume_link (DE-604)BV010450646
work_keys_str_mv AT fanghsiaolan apromisinggeneticalgorithmapproachtojobshopschedulingreschedulingandopenshopschedulingproblems
AT rosspeter apromisinggeneticalgorithmapproachtojobshopschedulingreschedulingandopenshopschedulingproblems
AT cornedave apromisinggeneticalgorithmapproachtojobshopschedulingreschedulingandopenshopschedulingproblems