Synthesis, Characterization and in-vitro Biological Studies of Curcumin decorated Biogenic Selenium Nanoparticles

Selenium nanoparticles have drawn interest recently, due to their distinctive physicochemical characteristics and potential usage in numerous applications, including medicine, electronics and catalysis. In this study, we employed Biancaea sappan (BS), often known as sappan wood or Brazilwood, which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano LIFE 2024-03, Vol.14 (1)
Hauptverfasser: Naaziya, M., Biju, Tina Sara, Francis, Arul Prakash, Veeraraghavan, Vishnu Priya, Gayathri, R., Sankaran, Kavitha
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Selenium nanoparticles have drawn interest recently, due to their distinctive physicochemical characteristics and potential usage in numerous applications, including medicine, electronics and catalysis. In this study, we employed Biancaea sappan (BS), often known as sappan wood or Brazilwood, which is a flowering tree that is endemic to Southeast Asia. Due to its antioxidant, anti-inflammatory and anticancer properties, this tree’s heartwood is frequently used in traditional medicine. Additionally, the wood is used to make natural dyes. In this study, we aim to develop an ecofriendly selenium nanoparticle using BS , as a natural reducing agent and curcumin as a capping agent. The nanoparticles were synthesized using the green synthesis method and characterized using various techniques. Biocompatibility was evaluated using hemolytic assay and the bioactivity of the nanoparticles was assessed using anti-inflammatory and antioxidant assays. Selenium nanoparticles (BCSeN) were successfully synthesized using BS bark extract and functionalized with curcumin. The nanoparticles were characterized by UV-Vis Spectroscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy and Energy-dispersive X-ray spectroscopy (EDX) analysis, confirming their morphology, crystallinity, functionalization, elemental composition, size and stability. In vitro, bioactivity studies revealed that the BCSeN exhibited significant anti-inflammatory activity. They also demonstrated notable antioxidant efficacy against DPPH (2,2-diphenyl-1-picrylhydrazyl) and were also found to have minimal hemolytic potential. Our findings highlight the potential of BCSeN as a promising candidate for anti-inflammatory and antioxidant applications. However, further in-depth analysis is required to fully understand their efficacy and toxicity.
ISSN:1793-9844
1793-9852
DOI:10.1142/S1793984423500137