Finding elliptic curves with a subgroup of prescribed size
Assuming the Generalized Riemann Hypothesis, we design a deterministic algorithm that, given a prime p and positive integer m = o ( p 1 / 2 ( log p ) − 4 ) , outputs an elliptic curve E over the finite field p for which the cardinality of E ( p ) is divisible by m . The running time of the algorithm...
Gespeichert in:
Veröffentlicht in: | International journal of number theory 2017-02, Vol.13 (1), p.133-152 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Assuming the Generalized Riemann Hypothesis, we design a deterministic algorithm that, given a prime
p
and positive integer
m
=
o
(
p
1
/
2
(
log
p
)
−
4
)
, outputs an elliptic curve
E
over the finite field
p
for which the cardinality of
E
(
p
)
is divisible by
m
. The running time of the algorithm is
m
p
1
/
2
+
o
(
1
)
, and this leads to more efficient constructions of rational functions over
p
whose image is small relative to
p
. We also give an unconditional version of the algorithm that works for almost all primes
p
, and give a probabilistic algorithm with subexponential time complexity. |
---|---|
ISSN: | 1793-0421 1793-7310 |
DOI: | 10.1142/S1793042117500099 |