Finding elliptic curves with a subgroup of prescribed size

Assuming the Generalized Riemann Hypothesis, we design a deterministic algorithm that, given a prime p and positive integer m = o ( p 1 / 2 ( log p ) − 4 ) , outputs an elliptic curve E over the finite field p for which the cardinality of E ( p ) is divisible by m . The running time of the algorithm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of number theory 2017-02, Vol.13 (1), p.133-152
Hauptverfasser: Shparlinski, Igor E., Sutherland, Andrew V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Assuming the Generalized Riemann Hypothesis, we design a deterministic algorithm that, given a prime p and positive integer m = o ( p 1 / 2 ( log p ) − 4 ) , outputs an elliptic curve E over the finite field p for which the cardinality of E ( p ) is divisible by m . The running time of the algorithm is m p 1 / 2 + o ( 1 ) , and this leads to more efficient constructions of rational functions over p whose image is small relative to p . We also give an unconditional version of the algorithm that works for almost all primes p , and give a probabilistic algorithm with subexponential time complexity.
ISSN:1793-0421
1793-7310
DOI:10.1142/S1793042117500099