ROBUST SURFACE-MATCHING REGISTRATION BASED ON THE STRUCTURE INFORMATION FOR IMAGE-GUIDED NEUROSURGERY SYSTEM

Image-to-patient space registration is to make the accurate alignment between the actual operating space and the image space. Although the image-to-patient space registration using paired-point is used in some image-guided neurosurgery systems, the current paired-point registration method has some d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mechanics in medicine and biology 2021-06, Vol.21 (5), p.2140009
Hauptverfasser: CHEN, XINRONG, YANG, FUMING, ZHANG, ZIQUN, BAI, BAODAN, GUO, LEI
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Image-to-patient space registration is to make the accurate alignment between the actual operating space and the image space. Although the image-to-patient space registration using paired-point is used in some image-guided neurosurgery systems, the current paired-point registration method has some drawbacks and usually cannot achieve the best registration result. Therefore, surface-matching registration is proposed to solve this problem. This paper proposes a surface-matching method that accomplishes image-to-patient space registration automatically. We represent the surface point clouds by the Gaussian Mixture Model (GMM), which can smoothly approximate the probability density distribution of an arbitrary point set. We also use mutual information as the similarity measure between the point clouds and take into account the structure information of the points. To analyze the registration error, we introduce a method for the estimation of Target Registration Error (TRE) by generating simulated data. In the experiments, we used the point sets of the cranium surface and the model of the human head determined by a CT and laser scanner. The TRE was less than 2 mm, and the TRE had better accuracy in the front and the posterior region. Compared to the Iterative Closest Point algorithm, the surface registration based on GMM and the structure information of the points proved superior in registration robustness and accurate implementation of image-to-patient registration.
ISSN:0219-5194
1793-6810
DOI:10.1142/S0219519421400091