EXACT TRAVELING-WAVE SOLUTION FOR LOCAL FRACTIONAL BOUSSINESQ EQUATION IN FRACTAL DOMAIN
The new Boussinesq-type model in a fractal domain is derived based on the formulation of the local fractional derivative. The novel traveling wave transform of the non-differentiable type is adopted to convert the local fractional Boussinesq equation into a nonlinear local fractional ODE. The exact...
Gespeichert in:
Veröffentlicht in: | Fractals (Singapore) 2017-08, Vol.25 (4), p.1740006 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 1740006 |
container_title | Fractals (Singapore) |
container_volume | 25 |
creator | YANG, XIAO-JUN MACHADO, J. A. TENREIRO BALEANU, DUMITRU |
description | The new Boussinesq-type model in a fractal domain is derived based on the formulation of the local fractional derivative. The novel traveling wave transform of the non-differentiable type is adopted to convert the local fractional Boussinesq equation into a nonlinear local fractional ODE. The exact traveling wave solution is also obtained with aid of the non-differentiable graph. The proposed method, involving the fractal special functions, is efficient for finding the exact solutions of the nonlinear PDEs in fractal domains. |
doi_str_mv | 10.1142/S0218348X17400060 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ADCHV</sourceid><recordid>TN_cdi_worldscientific_primary_S0218348X17400060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116185172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4050-8135819b6d9b561bc16db1ca8996bd676f4f4af71a4c51aa20bd4a7bc104b14f3</originalsourceid><addsrcrecordid>eNplkFFPgzAUhRujiXP6A3wj8RnthVLgESebJEizAbo30haasMyh7Rbjv7cT48ue7sk93zk3uQjdAr4HIN5DiT2IfBKtISQYY4rP0ATC2HdpQPxzNDna7tG_RFfGbCxCCJAJWqfrZFY51Sp5TfOsWLhvVjgly-sqY4UzZysnZ7Mkd-Yry9mVlY-sLsusSMulky7r5BfMipGw9hN7SbLiGl0ovjXdzd-conqeVrNnN2eLzBa6kuAAuxH4QQSxoG0sAgpCAm0FSB7FMRUtDakiinAVAicyAM49LFrCQ8thIoAof4ruxt4PPXweOrNvNsNB7-zJxgOgEAUQepaCkZJ6MEZ3qvnQ_TvX3w3g5vjA5uSBNoPHzNegt62Rfbfb96qX_9HTyA-H_WpH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116185172</pqid></control><display><type>article</type><title>EXACT TRAVELING-WAVE SOLUTION FOR LOCAL FRACTIONAL BOUSSINESQ EQUATION IN FRACTAL DOMAIN</title><source>World Scientific Open</source><creator>YANG, XIAO-JUN ; MACHADO, J. A. TENREIRO ; BALEANU, DUMITRU</creator><creatorcontrib>YANG, XIAO-JUN ; MACHADO, J. A. TENREIRO ; BALEANU, DUMITRU</creatorcontrib><description>The new Boussinesq-type model in a fractal domain is derived based on the formulation of the local fractional derivative. The novel traveling wave transform of the non-differentiable type is adopted to convert the local fractional Boussinesq equation into a nonlinear local fractional ODE. The exact traveling wave solution is also obtained with aid of the non-differentiable graph. The proposed method, involving the fractal special functions, is efficient for finding the exact solutions of the nonlinear PDEs in fractal domains.</description><identifier>ISSN: 0218-348X</identifier><identifier>EISSN: 1793-6543</identifier><identifier>DOI: 10.1142/S0218348X17400060</identifier><language>eng</language><publisher>Singapore: World Scientific Publishing Company</publisher><subject>Boussinesq equations ; Domains ; Fractal models ; Traveling waves</subject><ispartof>Fractals (Singapore), 2017-08, Vol.25 (4), p.1740006</ispartof><rights>2017, The Author(s)</rights><rights>2017. The Author(s). This is an Open Access article published by World Scientific Publishing Company. It is distributed under the terms of the Creative Commons Attribution 4.0 (CC-BY) License. Further distribution of this work is permitted, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4050-8135819b6d9b561bc16db1ca8996bd676f4f4af71a4c51aa20bd4a7bc104b14f3</citedby><cites>FETCH-LOGICAL-c4050-8135819b6d9b561bc16db1ca8996bd676f4f4af71a4c51aa20bd4a7bc104b14f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.worldscientific.com/doi/reader/10.1142/S0218348X17400060$$EPDF$$P50$$Gworldscientific$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27474,27901,27902,55544</link.rule.ids><linktorsrc>$$Uhttp://dx.doi.org/10.1142/S0218348X17400060$$EView_record_in_World_Scientific_Publishing$$FView_record_in_$$GWorld_Scientific_Publishing$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YANG, XIAO-JUN</creatorcontrib><creatorcontrib>MACHADO, J. A. TENREIRO</creatorcontrib><creatorcontrib>BALEANU, DUMITRU</creatorcontrib><title>EXACT TRAVELING-WAVE SOLUTION FOR LOCAL FRACTIONAL BOUSSINESQ EQUATION IN FRACTAL DOMAIN</title><title>Fractals (Singapore)</title><description>The new Boussinesq-type model in a fractal domain is derived based on the formulation of the local fractional derivative. The novel traveling wave transform of the non-differentiable type is adopted to convert the local fractional Boussinesq equation into a nonlinear local fractional ODE. The exact traveling wave solution is also obtained with aid of the non-differentiable graph. The proposed method, involving the fractal special functions, is efficient for finding the exact solutions of the nonlinear PDEs in fractal domains.</description><subject>Boussinesq equations</subject><subject>Domains</subject><subject>Fractal models</subject><subject>Traveling waves</subject><issn>0218-348X</issn><issn>1793-6543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ADCHV</sourceid><recordid>eNplkFFPgzAUhRujiXP6A3wj8RnthVLgESebJEizAbo30haasMyh7Rbjv7cT48ue7sk93zk3uQjdAr4HIN5DiT2IfBKtISQYY4rP0ATC2HdpQPxzNDna7tG_RFfGbCxCCJAJWqfrZFY51Sp5TfOsWLhvVjgly-sqY4UzZysnZ7Mkd-Yry9mVlY-sLsusSMulky7r5BfMipGw9hN7SbLiGl0ovjXdzd-conqeVrNnN2eLzBa6kuAAuxH4QQSxoG0sAgpCAm0FSB7FMRUtDakiinAVAicyAM49LFrCQ8thIoAof4ruxt4PPXweOrNvNsNB7-zJxgOgEAUQepaCkZJ6MEZ3qvnQ_TvX3w3g5vjA5uSBNoPHzNegt62Rfbfb96qX_9HTyA-H_WpH</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>YANG, XIAO-JUN</creator><creator>MACHADO, J. A. TENREIRO</creator><creator>BALEANU, DUMITRU</creator><general>World Scientific Publishing Company</general><general>World Scientific Publishing Co. Pte., Ltd</general><scope>ADCHV</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201708</creationdate><title>EXACT TRAVELING-WAVE SOLUTION FOR LOCAL FRACTIONAL BOUSSINESQ EQUATION IN FRACTAL DOMAIN</title><author>YANG, XIAO-JUN ; MACHADO, J. A. TENREIRO ; BALEANU, DUMITRU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4050-8135819b6d9b561bc16db1ca8996bd676f4f4af71a4c51aa20bd4a7bc104b14f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Boussinesq equations</topic><topic>Domains</topic><topic>Fractal models</topic><topic>Traveling waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>YANG, XIAO-JUN</creatorcontrib><creatorcontrib>MACHADO, J. A. TENREIRO</creatorcontrib><creatorcontrib>BALEANU, DUMITRU</creatorcontrib><collection>World Scientific Open</collection><collection>CrossRef</collection><jtitle>Fractals (Singapore)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YANG, XIAO-JUN</au><au>MACHADO, J. A. TENREIRO</au><au>BALEANU, DUMITRU</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EXACT TRAVELING-WAVE SOLUTION FOR LOCAL FRACTIONAL BOUSSINESQ EQUATION IN FRACTAL DOMAIN</atitle><jtitle>Fractals (Singapore)</jtitle><date>2017-08</date><risdate>2017</risdate><volume>25</volume><issue>4</issue><spage>1740006</spage><pages>1740006-</pages><issn>0218-348X</issn><eissn>1793-6543</eissn><abstract>The new Boussinesq-type model in a fractal domain is derived based on the formulation of the local fractional derivative. The novel traveling wave transform of the non-differentiable type is adopted to convert the local fractional Boussinesq equation into a nonlinear local fractional ODE. The exact traveling wave solution is also obtained with aid of the non-differentiable graph. The proposed method, involving the fractal special functions, is efficient for finding the exact solutions of the nonlinear PDEs in fractal domains.</abstract><cop>Singapore</cop><pub>World Scientific Publishing Company</pub><doi>10.1142/S0218348X17400060</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0218-348X |
ispartof | Fractals (Singapore), 2017-08, Vol.25 (4), p.1740006 |
issn | 0218-348X 1793-6543 |
language | eng |
recordid | cdi_worldscientific_primary_S0218348X17400060 |
source | World Scientific Open |
subjects | Boussinesq equations Domains Fractal models Traveling waves |
title | EXACT TRAVELING-WAVE SOLUTION FOR LOCAL FRACTIONAL BOUSSINESQ EQUATION IN FRACTAL DOMAIN |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A32%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ADCHV&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EXACT%20TRAVELING-WAVE%20SOLUTION%20FOR%20LOCAL%20FRACTIONAL%20BOUSSINESQ%20EQUATION%20IN%20FRACTAL%20DOMAIN&rft.jtitle=Fractals%20(Singapore)&rft.au=YANG,%20XIAO-JUN&rft.date=2017-08&rft.volume=25&rft.issue=4&rft.spage=1740006&rft.pages=1740006-&rft.issn=0218-348X&rft.eissn=1793-6543&rft_id=info:doi/10.1142/S0218348X17400060&rft_dat=%3Cproquest_ADCHV%3E2116185172%3C/proquest_ADCHV%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116185172&rft_id=info:pmid/&rfr_iscdi=true |