EXACT TRAVELING-WAVE SOLUTION FOR LOCAL FRACTIONAL BOUSSINESQ EQUATION IN FRACTAL DOMAIN

The new Boussinesq-type model in a fractal domain is derived based on the formulation of the local fractional derivative. The novel traveling wave transform of the non-differentiable type is adopted to convert the local fractional Boussinesq equation into a nonlinear local fractional ODE. The exact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fractals (Singapore) 2017-08, Vol.25 (4), p.1740006
Hauptverfasser: YANG, XIAO-JUN, MACHADO, J. A. TENREIRO, BALEANU, DUMITRU
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The new Boussinesq-type model in a fractal domain is derived based on the formulation of the local fractional derivative. The novel traveling wave transform of the non-differentiable type is adopted to convert the local fractional Boussinesq equation into a nonlinear local fractional ODE. The exact traveling wave solution is also obtained with aid of the non-differentiable graph. The proposed method, involving the fractal special functions, is efficient for finding the exact solutions of the nonlinear PDEs in fractal domains.
ISSN:0218-348X
1793-6543
DOI:10.1142/S0218348X17400060