NUMERICAL SIMULATION OF WAVE POWER DEVICES USING A TWO-FLUID FREE SURFACE SOLVER

A generic two-fluid (water/air) numerical model has been developed and applied for the simulation of the complex fluid flow around a wave driven rotating vane near a shoreline in the context of a novel wave energy device OWSC (Oscillating wave surge converter). The underlying scheme is based on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Modern physics letters. B, Condensed matter physics, statistical physics, applied physics Condensed matter physics, statistical physics, applied physics, 2005-12, Vol.19 (28n29), p.1479-1482
Hauptverfasser: QIAN, LING, MINGHAM, CLIVE, CAUSON, DEREK, INGRAM, DAVID, FOLLEY, MATT, WHITTAKER, TREVOR
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A generic two-fluid (water/air) numerical model has been developed and applied for the simulation of the complex fluid flow around a wave driven rotating vane near a shoreline in the context of a novel wave energy device OWSC (Oscillating wave surge converter). The underlying scheme is based on the solution of the incompressible Euler equations for a variable density fluid system for automatically capturing the interface between water and air and the Cartesian cut cell method for tracking moving solid boundaries on a background stationary Cartesian grid. The results from the present study indicate that the method is an effective tool for modeling a wide range of free surface flow problems.
ISSN:0217-9849
1793-6640
DOI:10.1142/S0217984905009705