Link prediction based on hybrid influence of neighbors

In previous link prediction researches, most scholars evaluate the influence of endpoints by the degree or H-index of endpoints, resulting in limited prediction accuracy. Through abundant investigations, we can evaluate the influence of endpoints accurately by the hybrid influence of neighbor nodes....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of modern physics. B, Condensed matter physics, statistical physics, applied physics Condensed matter physics, statistical physics, applied physics, 2020-02, Vol.34 (5), p.2050018
Hauptverfasser: Gao, Tianrun, Zhu, Xuzhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In previous link prediction researches, most scholars evaluate the influence of endpoints by the degree or H-index of endpoints, resulting in limited prediction accuracy. Through abundant investigations, we can evaluate the influence of endpoints accurately by the hybrid influence of neighbor nodes. Meanwhile, we calculate the hybrid influence of neighbors (HIN) by the average values of degree and H-index. In the paper, we conceive a HIN model. Large-scale experiments on 12 real datasets indicate that the conceived methods can significantly enhance the accuracy of link prediction.
ISSN:0217-9792
1793-6578
DOI:10.1142/S0217979220500186