Marine subsidies have multiple effects on coastal food webs

The effect of resource subsidies on recipient food webs has received much recent attention. The purpose of this study was to measure the effects of significant seasonal seaweed deposition events, caused by hurricanes and other storms, on species inhabiting subtropical islands. The seaweed represents...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecology (Durham) 2010-05, Vol.91 (5), p.1424-1434
Hauptverfasser: Spiller, David A, Piovia-Scott, Jonah, Wright, Amber N, Yang, Louie H, Takimoto, Gaku, Schoener, Thomas W, Iwata, Tomoya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of resource subsidies on recipient food webs has received much recent attention. The purpose of this study was to measure the effects of significant seasonal seaweed deposition events, caused by hurricanes and other storms, on species inhabiting subtropical islands. The seaweed represents a pulsed resource subsidy that is consumed by amphipods and flies, which are eaten by lizards and predatory arthropods, which in turn consume terrestrial herbivores. Additionally, seaweed decomposes directly into the soil under plants. We added seaweed to six shoreline plots and removed seaweed from six other plots for three months; all plots were repeatedly monitored for 12 months after the initial manipulation. Lizard density ( Anolis sagrei ) responded rapidly, and the overall average was 63% higher in subsidized than in removal plots. Stable-isotope analysis revealed a shift in lizard diet composition toward more marine-based prey in subsidized plots. Leaf damage was 70% higher in subsidized than in removal plots after eight months, but subsequent damage was about the same in the two treatments. Foliage growth rate was 70% higher in subsidized plots after 12 months. Results of a complementary study on the relationship between natural variation in marine subsidies and island food web components were consistent with the experimental results. We suggest two causal pathways for the effects of marine subsidies on terrestrial plants: (1) the "fertilization effect" in which seaweed adds nutrients to plants, increasing their growth rate, and (2) the "predator diet shift effect" in which lizards shift from eating local prey (including terrestrial herbivores) to eating mostly marine detritivores.
ISSN:0012-9658
1939-9170
DOI:10.1890/09-0715.1