Output correction factors for nine small field detectors in 6 MV radiation therapy photon beams: A PENELOPE Monte Carlo study
Purpose: To determine detector-specific output correction factors, $k_{Q_{{\rm clin}},Q_{{\rm msr}} }^{f_{{\rm clin}},f_{{\rm msr}} }$ k Q clin , Q msr f clin , f msr , in 6 MV small photon beams for air and liquid ionization chambers, silicon diodes, and diamond detectors from two manufacturers. Me...
Gespeichert in:
Veröffentlicht in: | Medical physics (Lancaster) 2014-04, Vol.41 (4), p.041711-n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose:
To determine detector-specific output correction factors,
$k_{Q_{{\rm clin}},Q_{{\rm msr}} }^{f_{{\rm clin}},f_{{\rm msr}} }$
k
Q
clin
,
Q
msr
f
clin
,
f
msr
, in 6 MV small photon beams for air and liquid ionization chambers, silicon diodes, and diamond detectors from two manufacturers.
Methods:
Field output factors, defined according to the international formalism published byAlfonso
et al.
[Med. Phys.
35, 5179–5186 (2008)], relate the dosimetry of small photon beams to that of the machine-specific reference field; they include a correction to measured ratios of detector readings, conventionally used as output factors in broad beams. Output correction factors were calculated with the PENELOPE Monte Carlo (MC) system with a statistical uncertainty (type-A) of 0.15% or lower. The geometries of the detectors were coded using blueprints provided by the manufacturers, and phase-space files for field sizes between 0.5 × 0.5 cm2 and 10 × 10 cm2 from a Varian Clinac iX 6 MV linac used as sources. The output correction factors were determined scoring the absorbed dose within a detector and to a small water volume in the absence of the detector, both at a depth of 10 cm, for each small field and for the reference beam of 10 × 10 cm2.
Results:
The Monte Carlo calculated output correction factors for the liquid ionization chamber and the diamond detector were within about ±1% of unity even for the smallest field sizes. Corrections were found to be significant for small air ionization chambers due to their cavity dimensions, as expected. The correction factors for silicon diodes varied with the detector type (shielded or unshielded), confirming the findings by other authors; different corrections for the detectors from the two manufacturers were obtained. The differences in the calculated factors for the various detectors were analyzed thoroughly and whenever possible the results were compared to published data, often calculated for different accelerators and using the EGSnrc MC system. The differences were used to estimate a type-B uncertainty for the correction factors. Together with the type-A uncertainty from the Monte Carlo calculations, an estimation of the combined standard uncertainty was made, assigned to the mean correction factors from various estimates.
Conclusions:
The present work provides a consistent and specific set of data for the output correction factors of a broad set of detectors in a Varian Clinac iX 6 MV accelerator and contributes to |
---|---|
ISSN: | 0094-2405 2473-4209 2473-4209 |
DOI: | 10.1118/1.4868695 |