Measuring linac photon beam energy through EPID image analysis of physically wedged fields
Purpose: Electronic portal imaging devices (EPIDs) have proven to be useful tools for measuring several parameters of interest in linac quality assurance (QA). However, a method for measuring linac photon beam energy using EPIDs has not previously been reported. In this report, such a method is devi...
Gespeichert in:
Veröffentlicht in: | Medical physics (Lancaster) 2014-02, Vol.41 (2), p.021708-n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose:
Electronic portal imaging devices (EPIDs) have proven to be useful tools for measuring several parameters of interest in linac quality assurance (QA). However, a method for measuring linac photon beam energy using EPIDs has not previously been reported. In this report, such a method is devised and tested, based on fitting a second order polynomial to the profiles of physically wedged beams, where the metric of interest is the second order coefficientα. The relationship between α and the beam quality index [percentage depth dose at 10 cm depth (PDD10)] is examined to produce a suitable calibration curve between these two parameters.
Methods:
Measurements were taken in a water-tank for beams with a range of energies representative of the local QA tolerances about the nominal value 6 MV. In each case, the beam quality was found in terms of PDD10 for 100 × 100 mm2 square fields. EPID images of 200 × 200 mm2 wedged fields were then taken for each beam and the wedge profile was fitted in MATLAB 2010b (The MathWorks, Inc., Natick, MA). α was then plotted against PDD10 and fitted with a linear relation to produce the calibration curve. The uncertainty in α was evaluated by taking five repeat EPID images of the wedged field for a beam of 6 MV nominal energy. The consistency of measuring α was found by taking repeat measurements on a single linac over a three month period. The method was also tested at 10 MV by repeating the water-tank crosscalibration for a range of energies centered approximately about a 10 MV nominal value. Finally, the calibration curve from the test linac and that from a separate clinical machine were compared to test consistency of the method across machines in a matched fleet.
Results:
The relationship betweenα and PDD10 was found to be strongly linear (R2 = 0.979) while the uncertainty in α was found to be negligible compared to that associated with measuring PDD10 in the water-tank (±0.3%). The repeat measurements over a three month period showed the method to be reasonably consistent (i.e., well within the limits defined by local QA tolerances). The measurements were repeated on a matched machine and the same linear relationship between α and PDD10 was observed. The results for both machines were found to be indistinguishable across the energy range of interest (i.e., across and close to the thresholds defined by local QA tolerances), hence a single relation could be established across a matched fleet. Finally, the experiment was |
---|---|
ISSN: | 0094-2405 2473-4209 |
DOI: | 10.1118/1.4856075 |