On a local‐global principle for the divisibility of a rational point by a positive integer
Following two previous papers (R. Dvornicich and U. Zannier, Bull. Soc. Math. France 129 (2001), 317–338; C. R. Acad. Sci. Paris, Ser. I 338 (2004) 47–50), we continue the investigation of a local‐global principle for the divisibility by a positive integer of a rational point on a commutative algebr...
Gespeichert in:
Veröffentlicht in: | The Bulletin of the London Mathematical Society 2007-02, Vol.39 (1), p.27-34 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Following two previous papers (R. Dvornicich and U. Zannier, Bull. Soc. Math. France 129 (2001), 317–338; C. R. Acad. Sci. Paris, Ser. I 338 (2004) 47–50), we continue the investigation of a local‐global principle for the divisibility by a positive integer of a rational point on a commutative algebraic group. In the first half of this paper some new affirmative results are obtained for elliptic curves. In the second half we investigate the structure of possible situations when the principle does not hold; it is shown that whenever a certain cohomology group does not vanish (which ‘often’ happens) there exist negative examples over suitable number fields. |
---|---|
ISSN: | 0024-6093 1469-2120 |
DOI: | 10.1112/blms/bdl002 |