Quasiperiodic and mixed commutator factorizations in free products of groups

It is well known that a nontrivial commutator in a free group is never a proper power. We prove a theorem that generalizes this fact and has several worthwhile corollaries. For example, an equation [x1,y1]…[xk,yk]=zn, where n⩾2k, in the free product F of groups without nontrivial elements of order ⩽...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Bulletin of the London Mathematical Society 2018-10, Vol.50 (5), p.832-844
Hauptverfasser: Ivanov, Sergei V., Klyachko, Anton A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is well known that a nontrivial commutator in a free group is never a proper power. We prove a theorem that generalizes this fact and has several worthwhile corollaries. For example, an equation [x1,y1]…[xk,yk]=zn, where n⩾2k, in the free product F of groups without nontrivial elements of order ⩽n implies that z is conjugate to an element of a free factor of F. If a nontrivial commutator in a free group factors into a product of elements which are conjugate to each other then all these elements are distinct.
ISSN:0024-6093
1469-2120
DOI:10.1112/blms.12188