Homological finiteness conditions for a class of metabelian groups
We generalize a theorem of Groves and Kochloukova concerning cohomological finiteness conditions for metabelian groups in order to encompass a classical example of Baumslag and Stammbach. More precisely we shall show that for any natural number n and indeterminate x, the group of 2×2 matrices genera...
Gespeichert in:
Veröffentlicht in: | The Bulletin of the London Mathematical Society 2018-02, Vol.50 (1), p.17-25 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We generalize a theorem of Groves and Kochloukova concerning cohomological finiteness conditions for metabelian groups in order to encompass a classical example of Baumslag and Stammbach. More precisely we shall show that for any natural number n and indeterminate x, the group of 2×2 matrices generated by
1011,x001,n!001,i+x001for i=1,⋯,n is of type FPn+1 but not of type FPn+2, thus providing evidence in favour of the Bieri–Groves FPm‐conjecture. These examples are amongst the simplest known examples of torsion‐free metabelian groups of their kind. |
---|---|
ISSN: | 0024-6093 1469-2120 |
DOI: | 10.1112/blms.12093 |