LINEAR AND QUADRATIC UNIFORMITY OF THE MÖBIUS FUNCTION OVER Fq[t]

We examine correlations of the Möbius function over Fq[t] with linear or quadratic phases, that is, averages of the form 11qn∑deg f0 if Q is quadratic. The latter bound may be reduced to O(q−c'n) for some c'>0 when Q(f) is a linear form in the coefficients of f2, that is, a Hankel quadr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematika 2019, Vol.65 (3), p.505-529
Hauptverfasser: Bienvenu, Pierre‐Yves, Lê, Thái Hoàng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 529
container_issue 3
container_start_page 505
container_title Mathematika
container_volume 65
creator Bienvenu, Pierre‐Yves
Lê, Thái Hoàng
description We examine correlations of the Möbius function over Fq[t] with linear or quadratic phases, that is, averages of the form 11qn∑deg f0 if Q is quadratic. The latter bound may be reduced to O(q−c'n) for some c'>0 when Q(f) is a linear form in the coefficients of f2, that is, a Hankel quadratic form, whereas, for general quadratic forms, it relies on a bilinear version of the additive‐combinatorial Bogolyubov theorem.
doi_str_mv 10.1112/S0025579319000032
format Article
fullrecord <record><control><sourceid>wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1112_S0025579319000032_MTKS0025579319000032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MTKS0025579319000032</sourcerecordid><originalsourceid>FETCH-LOGICAL-s1302-5470d5b8e9f0932e99c56472d52fafbb8cb43155017f148d477f93127a04c2f43</originalsourceid><addsrcrecordid>eNplkNtKw0AYhBdRMFYfwLt9gej_76GbvUzTxC7mgOlGEJGQ00KlgjaC9EV8IV_MBr3r3AzMBwMzhFwj3CAiu10DMCmV5qjhIM5OiMdAoK-0YKfEm7A_8XNyMY6vAHIeCPTIIjV5HJY0zJf0oQqXZWhNRKvcJEWZGftEi4TaVUyzn--FqdY0qfLImiKnxWNc0uTj-fPlkpy5ZjsOV_8-I1US22jlp8WdicLUH5ED86VQ0Ms2GLQDzdmgdSfnQrFeMte4tg26VnCUElA5FEEvlHKHOUw1IDrmBJ-R6K_3a7Md9vX7bvPW7PY1Qj09UB89UGf2_ijkv7BwTBA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>LINEAR AND QUADRATIC UNIFORMITY OF THE MÖBIUS FUNCTION OVER Fq[t]</title><source>Access via Wiley Online Library</source><source>Cambridge University Press Journals Complete</source><creator>Bienvenu, Pierre‐Yves ; Lê, Thái Hoàng</creator><creatorcontrib>Bienvenu, Pierre‐Yves ; Lê, Thái Hoàng</creatorcontrib><description>We examine correlations of the Möbius function over Fq[t] with linear or quadratic phases, that is, averages of the form 11qn∑deg f&lt;nμ(f)χ(Q(f)) for an additive character χ over Fq and a polynomial Q∈Fq[x0,...,xn−1] of degree at most 2 in the coefficients x0,...,xn−1 of f=∑i&lt;nxiti. As in the integers, it is reasonable to expect that, due to the random‐like behaviour of μ, such sums should exhibit considerable cancellation. In this paper we show that the correlation (1) is bounded by Oε(q(−1/4+ε)n) for any ε&gt;0 if Q is linear and O(q−nc) for some absolute constant c&gt;0 if Q is quadratic. The latter bound may be reduced to O(q−c'n) for some c'&gt;0 when Q(f) is a linear form in the coefficients of f2, that is, a Hankel quadratic form, whereas, for general quadratic forms, it relies on a bilinear version of the additive‐combinatorial Bogolyubov theorem.</description><identifier>ISSN: 0025-5793</identifier><identifier>EISSN: 2041-7942</identifier><identifier>DOI: 10.1112/S0025579319000032</identifier><language>eng</language><publisher>London, UK: London Mathematical Society</publisher><subject>11B30 (primary) ; 11T55 (secondary)</subject><ispartof>Mathematika, 2019, Vol.65 (3), p.505-529</ispartof><rights>2019 University College London</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2FS0025579319000032$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2FS0025579319000032$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,4024,27923,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Bienvenu, Pierre‐Yves</creatorcontrib><creatorcontrib>Lê, Thái Hoàng</creatorcontrib><title>LINEAR AND QUADRATIC UNIFORMITY OF THE MÖBIUS FUNCTION OVER Fq[t]</title><title>Mathematika</title><description>We examine correlations of the Möbius function over Fq[t] with linear or quadratic phases, that is, averages of the form 11qn∑deg f&lt;nμ(f)χ(Q(f)) for an additive character χ over Fq and a polynomial Q∈Fq[x0,...,xn−1] of degree at most 2 in the coefficients x0,...,xn−1 of f=∑i&lt;nxiti. As in the integers, it is reasonable to expect that, due to the random‐like behaviour of μ, such sums should exhibit considerable cancellation. In this paper we show that the correlation (1) is bounded by Oε(q(−1/4+ε)n) for any ε&gt;0 if Q is linear and O(q−nc) for some absolute constant c&gt;0 if Q is quadratic. The latter bound may be reduced to O(q−c'n) for some c'&gt;0 when Q(f) is a linear form in the coefficients of f2, that is, a Hankel quadratic form, whereas, for general quadratic forms, it relies on a bilinear version of the additive‐combinatorial Bogolyubov theorem.</description><subject>11B30 (primary)</subject><subject>11T55 (secondary)</subject><issn>0025-5793</issn><issn>2041-7942</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNplkNtKw0AYhBdRMFYfwLt9gej_76GbvUzTxC7mgOlGEJGQ00KlgjaC9EV8IV_MBr3r3AzMBwMzhFwj3CAiu10DMCmV5qjhIM5OiMdAoK-0YKfEm7A_8XNyMY6vAHIeCPTIIjV5HJY0zJf0oQqXZWhNRKvcJEWZGftEi4TaVUyzn--FqdY0qfLImiKnxWNc0uTj-fPlkpy5ZjsOV_8-I1US22jlp8WdicLUH5ED86VQ0Ms2GLQDzdmgdSfnQrFeMte4tg26VnCUElA5FEEvlHKHOUw1IDrmBJ-R6K_3a7Md9vX7bvPW7PY1Qj09UB89UGf2_ijkv7BwTBA</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Bienvenu, Pierre‐Yves</creator><creator>Lê, Thái Hoàng</creator><general>London Mathematical Society</general><scope/></search><sort><creationdate>2019</creationdate><title>LINEAR AND QUADRATIC UNIFORMITY OF THE MÖBIUS FUNCTION OVER Fq[t]</title><author>Bienvenu, Pierre‐Yves ; Lê, Thái Hoàng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s1302-5470d5b8e9f0932e99c56472d52fafbb8cb43155017f148d477f93127a04c2f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>11B30 (primary)</topic><topic>11T55 (secondary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bienvenu, Pierre‐Yves</creatorcontrib><creatorcontrib>Lê, Thái Hoàng</creatorcontrib><jtitle>Mathematika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bienvenu, Pierre‐Yves</au><au>Lê, Thái Hoàng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LINEAR AND QUADRATIC UNIFORMITY OF THE MÖBIUS FUNCTION OVER Fq[t]</atitle><jtitle>Mathematika</jtitle><date>2019</date><risdate>2019</risdate><volume>65</volume><issue>3</issue><spage>505</spage><epage>529</epage><pages>505-529</pages><issn>0025-5793</issn><eissn>2041-7942</eissn><abstract>We examine correlations of the Möbius function over Fq[t] with linear or quadratic phases, that is, averages of the form 11qn∑deg f&lt;nμ(f)χ(Q(f)) for an additive character χ over Fq and a polynomial Q∈Fq[x0,...,xn−1] of degree at most 2 in the coefficients x0,...,xn−1 of f=∑i&lt;nxiti. As in the integers, it is reasonable to expect that, due to the random‐like behaviour of μ, such sums should exhibit considerable cancellation. In this paper we show that the correlation (1) is bounded by Oε(q(−1/4+ε)n) for any ε&gt;0 if Q is linear and O(q−nc) for some absolute constant c&gt;0 if Q is quadratic. The latter bound may be reduced to O(q−c'n) for some c'&gt;0 when Q(f) is a linear form in the coefficients of f2, that is, a Hankel quadratic form, whereas, for general quadratic forms, it relies on a bilinear version of the additive‐combinatorial Bogolyubov theorem.</abstract><cop>London, UK</cop><pub>London Mathematical Society</pub><doi>10.1112/S0025579319000032</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5793
ispartof Mathematika, 2019, Vol.65 (3), p.505-529
issn 0025-5793
2041-7942
language eng
recordid cdi_wiley_primary_10_1112_S0025579319000032_MTKS0025579319000032
source Access via Wiley Online Library; Cambridge University Press Journals Complete
subjects 11B30 (primary)
11T55 (secondary)
title LINEAR AND QUADRATIC UNIFORMITY OF THE MÖBIUS FUNCTION OVER Fq[t]
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T06%3A13%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LINEAR%20AND%20QUADRATIC%20UNIFORMITY%20OF%20THE%20M%C3%96BIUS%20FUNCTION%20OVER%20Fq%5Bt%5D&rft.jtitle=Mathematika&rft.au=Bienvenu,%20Pierre%E2%80%90Yves&rft.date=2019&rft.volume=65&rft.issue=3&rft.spage=505&rft.epage=529&rft.pages=505-529&rft.issn=0025-5793&rft.eissn=2041-7942&rft_id=info:doi/10.1112/S0025579319000032&rft_dat=%3Cwiley%3EMTKS0025579319000032%3C/wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true