LINEAR AND QUADRATIC UNIFORMITY OF THE MÖBIUS FUNCTION OVER Fq[t]
We examine correlations of the Möbius function over Fq[t] with linear or quadratic phases, that is, averages of the form 11qn∑deg f0 if Q is quadratic. The latter bound may be reduced to O(q−c'n) for some c'>0 when Q(f) is a linear form in the coefficients of f2, that is, a Hankel quadr...
Gespeichert in:
Veröffentlicht in: | Mathematika 2019, Vol.65 (3), p.505-529 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We examine correlations of the Möbius function over Fq[t] with linear or quadratic phases, that is, averages of the form
11qn∑deg f0 if Q is quadratic. The latter bound may be reduced to O(q−c'n) for some c'>0 when Q(f) is a linear form in the coefficients of f2, that is, a Hankel quadratic form, whereas, for general quadratic forms, it relies on a bilinear version of the additive‐combinatorial Bogolyubov theorem. |
---|---|
ISSN: | 0025-5793 2041-7942 |
DOI: | 10.1112/S0025579319000032 |