LINEAR AND QUADRATIC UNIFORMITY OF THE MÖBIUS FUNCTION OVER Fq[t]

We examine correlations of the Möbius function over Fq[t] with linear or quadratic phases, that is, averages of the form 11qn∑deg f0 if Q is quadratic. The latter bound may be reduced to O(q−c'n) for some c'>0 when Q(f) is a linear form in the coefficients of f2, that is, a Hankel quadr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematika 2019, Vol.65 (3), p.505-529
Hauptverfasser: Bienvenu, Pierre‐Yves, Lê, Thái Hoàng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We examine correlations of the Möbius function over Fq[t] with linear or quadratic phases, that is, averages of the form 11qn∑deg f0 if Q is quadratic. The latter bound may be reduced to O(q−c'n) for some c'>0 when Q(f) is a linear form in the coefficients of f2, that is, a Hankel quadratic form, whereas, for general quadratic forms, it relies on a bilinear version of the additive‐combinatorial Bogolyubov theorem.
ISSN:0025-5793
2041-7942
DOI:10.1112/S0025579319000032