Minimal Lagrangian 2-Tori in CP2 Come in Real Families of Every Dimension

It is shown that for every non-negative integer n, there is a real n-dimensional family of minimal Lagrangian tori in CP2, and hence of special Lagrangian cones in C3 whose link is a torus. The proof utilises the fact that such tori arise from integrable systems, and can be described using algebro-g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the London Mathematical Society 2004-04, Vol.69 (2), p.531-544
Hauptverfasser: Carberry, Emma, Mcintosh, Ian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is shown that for every non-negative integer n, there is a real n-dimensional family of minimal Lagrangian tori in CP2, and hence of special Lagrangian cones in C3 whose link is a torus. The proof utilises the fact that such tori arise from integrable systems, and can be described using algebro-geometric (spectral curve) data.
ISSN:0024-6107
1469-7750
DOI:10.1112/S0024610703005039