Minimal Lagrangian 2-Tori in CP2 Come in Real Families of Every Dimension
It is shown that for every non-negative integer n, there is a real n-dimensional family of minimal Lagrangian tori in CP2, and hence of special Lagrangian cones in C3 whose link is a torus. The proof utilises the fact that such tori arise from integrable systems, and can be described using algebro-g...
Gespeichert in:
Veröffentlicht in: | Journal of the London Mathematical Society 2004-04, Vol.69 (2), p.531-544 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is shown that for every non-negative integer n, there is a real n-dimensional family of minimal Lagrangian tori in CP2, and hence of special Lagrangian cones in C3 whose link is a torus. The proof utilises the fact that such tori arise from integrable systems, and can be described using algebro-geometric (spectral curve) data. |
---|---|
ISSN: | 0024-6107 1469-7750 |
DOI: | 10.1112/S0024610703005039 |