A Sharp Lp Inequality for Dyadic A1 Weights in Rn

The exact best possible range of p is determined such that any dyadic A1 weight w on Rn satisfies a reverse Hölder inequality for p, which depends on the dimension n and the corresponding A1 constant of w. The proof is based on an effective linearization of the dyadic maximal operator applied to dya...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Bulletin of the London Mathematical Society 2005-12, Vol.37 (6), p.919-926
1. Verfasser: Melas, Antonios D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The exact best possible range of p is determined such that any dyadic A1 weight w on Rn satisfies a reverse Hölder inequality for p, which depends on the dimension n and the corresponding A1 constant of w. The proof is based on an effective linearization of the dyadic maximal operator applied to dyadic step functions. 2000 Mathematics Subject Classification 42B25.
ISSN:0024-6093
1469-2120
DOI:10.1112/S0024609305004765