Low-complexity architecture for AR(1) inference
In this Letter, the authors propose a low-complexity estimator for the correlation coefficient based on the signed $\operatorname {\rm AR}\lpar 1\rpar $AR(1) process. The introduced approximation is suitable for implementation in low-power hardware architectures. Monte Carlo simulations reveal that...
Gespeichert in:
Veröffentlicht in: | Electronics letters 2020-07, Vol.56 (14), p.732-734 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this Letter, the authors propose a low-complexity estimator for the correlation coefficient based on the signed $\operatorname {\rm AR}\lpar 1\rpar $AR(1) process. The introduced approximation is suitable for implementation in low-power hardware architectures. Monte Carlo simulations reveal that the proposed estimator performs comparably to the competing methods in the literature with maximum error in order of $10^{-2}$10−2. However, the hardware implementation of the introduced method presents considerable advantages in several relevant metrics, offering more than 95% reduction in dynamic power and doubling the maximum operating frequency when compared to the reference method. |
---|---|
ISSN: | 0013-5194 1350-911X 1350-911X |
DOI: | 10.1049/el.2019.4030 |