Epanechnikov kernel for incomplete data

The Epanechnikov kernel (EK) is a popular kernel function that has achieved promising results in many machine learning applications. Although the EK is widely used, its basic formulation requires fully observed input feature vectors. A method is proposed to estimate the EK when these input vectors a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics letters 2017-10, Vol.53 (21), p.1408-1410
Hauptverfasser: Mesquita, D.P.P, Gomes, J.P.P, Souza Junior, A.H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Epanechnikov kernel (EK) is a popular kernel function that has achieved promising results in many machine learning applications. Although the EK is widely used, its basic formulation requires fully observed input feature vectors. A method is proposed to estimate the EK when these input vectors are only partially observed, i.e. some of its features are missing. In the proposed method, named expected EK, the expected value of the kernel function is estimated given the distribution of the data and the observed values of the feature vectors.
ISSN:0013-5194
1350-911X
1350-911X
DOI:10.1049/el.2017.0507