Entropy-based stochastic gradient algorithm with adaptive neuron slope for all-pole whitening
The stochastic gradient algorithm presented employs the time-varying neuron's slope to optimise performing of the all-pole filter-whitener maximising the joint Shannon's entropy. By using the time adaptive slope, which matches the unknown probability density function of an input process, a...
Gespeichert in:
Veröffentlicht in: | Electronics letters 2016-03, Vol.52 (5), p.397-399 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The stochastic gradient algorithm presented employs the time-varying neuron's slope to optimise performing of the all-pole filter-whitener maximising the joint Shannon's entropy. By using the time adaptive slope, which matches the unknown probability density function of an input process, a neuron slope selection issue of the original algorithm is facilitated and its tracking of non-stationary statistics is improved. The performing of algorithm is verified using the whitener as a front-end amplitude equaliser of the blind equaliser. |
---|---|
ISSN: | 0013-5194 1350-911X 1350-911X |
DOI: | 10.1049/el.2015.3052 |