Entropy-based stochastic gradient algorithm with adaptive neuron slope for all-pole whitening

The stochastic gradient algorithm presented employs the time-varying neuron's slope to optimise performing of the all-pole filter-whitener maximising the joint Shannon's entropy. By using the time adaptive slope, which matches the unknown probability density function of an input process, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics letters 2016-03, Vol.52 (5), p.397-399
1. Verfasser: Krstic, V R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The stochastic gradient algorithm presented employs the time-varying neuron's slope to optimise performing of the all-pole filter-whitener maximising the joint Shannon's entropy. By using the time adaptive slope, which matches the unknown probability density function of an input process, a neuron slope selection issue of the original algorithm is facilitated and its tracking of non-stationary statistics is improved. The performing of algorithm is verified using the whitener as a front-end amplitude equaliser of the blind equaliser.
ISSN:0013-5194
1350-911X
1350-911X
DOI:10.1049/el.2015.3052